POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the automaton of order n are numbered from 1 to n.
The order of the cell is the number of different values it may contain. Usually, values of a cell of order m are considered to be integer numbers from 0 to m − 1.
One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed. In this problem we examine the special kind of cellular automaton — circular cellular automaton of order n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.
A distance between cells i and j in n,m-automaton is defined as min(|i − j|, n − |i − j|). A d-environment of a cell is the set of cells at a distance not greater than d.
On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.
The following picture shows 1-step of the 5,3-automaton.
The problem is to calculate the state of the n,m-automaton after k d-steps.
Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤ 1 000 000, 0 ≤ d < n⁄2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers from 0 to m − 1 — initial values of the automaton’s cells.
Output
Output the values of the n,m-automaton’s cells after k d-steps.
Sample Input
sample input #1
5 3 1 1
1 2 2 1 2 sample input #2
5 3 1 10
1 2 2 1 2
Sample Output
sample output #1
2 2 2 2 1 sample output #2
2 0 0 2 2
题意:题面很臭很长。大意是,有一个大小为N的环,给出M,K,D,以及N个数。我们进行K次操作,每次操作把距离当前点不超过D的累加到当前点,结果模M。
思路:因为要进行K次,每次的原则是一样的,我们可以想到用矩阵来优化,如果i能到达j,把么base[i][j]=1;则结果ans=A*(base^K)。
但是需要优化,时间复杂度为O(N^3*lgK)。我们发现矩阵是下一行由上一行右移一位而来,那么我们保存一维即可代表这个矩阵。同样的,我们只需要得到第一行的矩阵结果,就能得到整个矩阵的结果。
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int N,Mod,D,K;
struct mat
{
int M[maxn];
mat(){ rep(i,,N) M[i]=; }
mat friend operator*(mat a,mat b){
mat res;
rep(k,,N)
rep(j,,N){
res.M[j]=(res.M[j]+(ll)a.M[k]*b.M[j-k+>?j-k+:j-k++N]%Mod)%Mod;
}
return res;
}
mat friend operator ^(mat a,int x)
{
mat res;rep(i,,N) res.M[]=;
while(x){
if(x&) res=res*a; a=a*a; x/=;
} return res;
} };
int main()
{
scanf("%d%d%d%d",&N,&Mod,&D,&K);
mat a,base;
rep(i,,N) scanf("%d",&a.M[i]);
rep(i,,N)
if(i-<=D||N-i+<=D||N-+i<=D) base.M[i]=;
a=a*(base^K);
rep(i,,N-) printf("%d ",a.M[i]);
printf("%d\n",a.M[N]);
return ;
}
POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)的更多相关文章
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- POJ 3150 Cellular Automaton(矩阵快速幂)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...
- POJ 3150 Cellular Automaton(矩阵高速幂)
题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...
- POJ 3150 Cellular Automaton --矩阵快速幂及优化
题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...
- POJ 3150 Cellular Automaton(矩阵乘法+二分)
题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组 ...
- poj 3150 Cellular Automaton
首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+ ...
- 【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)
http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 ...
- POJ3150—Cellular Automaton(循环矩阵)
题目链接:http://poj.org/problem?id=3150 题目意思:有n个数围成一个环,现在有一种变换,将所有距离第i(1<=i<=n)个数小于等于d的数加起来,对m取余,现 ...
- UVA 1386 - Cellular Automaton(循环矩阵)
UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category ...
随机推荐
- JavaScript:基础扩展(1)——JSON
JavaScript:扩展知识(1)——JSON 理解: 关于 JSON,最重要的是要理解它是一种数据格式,不是一种编程语言.虽然具有相同的语法形式,但 JSON 并不从属于 JavaScript.而 ...
- 前端 JavaScript&Dom
JavaScript是一种属于网络的脚本语言,已经被广泛用于Web应用开发,常用来为网页添加各式各样的动态功能,为用户提供更流畅美观的浏览效果.通常JavaScript脚本是通过嵌入在HTML中来实现 ...
- 防止基本的XSS攻击 滤掉HTML标签
/** * 防止基本的XSS攻击 滤掉HTML标签 * 将HTML的特殊字符转换为了HTML实体 htmlentities * 将#和%转换为他们对应的实体符号 * 加上了$length参数来限制提交 ...
- Redis集群环境搭建
Redis集群cluster环境搭建 描述:本章节主要单服务器搭建集群,在一个服务器上启动多个不同端口的redis服务,非真实环境. 真实环境下redis集群会搭建在多个物理服务器上,并非单一的服务器 ...
- Linux基本命令 帮助命令
命令名称:man 英文原意:manual 命令所在路径:/usr/bin/man 执行权限:所有用户 语法:man [命令或者配置文件] 功能描述:获取帮助信息 例如:man ls 查看ls命令的帮助 ...
- uboot相关的几篇好文
http://www.eeworld.com.cn/mcu/2015/0727/article_21246.html http://blog.csdn.net/kernel_yx/article/de ...
- Tooltip表单验证的注册表单
在线演示 本地下载
- Android电容屏(一)【转】
本文转载自:http://blog.csdn.net/xubin341719/article/details/7820492 关键词:Android 电容屏 tp ITO 平台信息:内核:linu ...
- HBase学习1(hbase基础)
认识NoSQL NoSQL:泛指非关系数据库(Not only SQL) NoSQL两重要特征:使用硬盘和把随机存储器作为存储载体 NoSQL分类(按照存储格式) 1)键值(Key-Value)存储数 ...
- 批处理之IPC连接工具
由于自己需要重复一些工作,闲来没事发个搞个批处理玩玩. 功能介绍:建立IPC连接,IPC磁盘映射,断开IPC连接等 @echo off color 0A echo Welcome!!! echo 本机 ...