You are given a list of train stations, say from the station 1 to the station 100.

The passengers can order several tickets from one station to another before the train leaves the station one. We will issue one train from the station 1 to the station 100 after all reservations have been made. Write a program to determine the minimum number of seats required for all passengers so that all reservations are satisfied without any conflict.

Note that one single seat can be used by several passengers as long as there are no conflicts between them. For example, a passenger from station 1 to station 10 can share a seat with another passenger from station 30 to 60.

Input Format

Several sets of ticket reservations. The inputs are a list of integers. Within each set, the first integer (in a single line) represents the number of orders, nn, which can be as large as 10001000. After nn, there will be nn lines representing the nn reservations; each line contains three integers s, t, ks,t,k, which means that the reservation needs kk seats from the station ss to the station tt .These ticket reservations occur repetitively in the input as the pattern described above. An integer n = 0n=0 (zero) signifies the end of input.

Output Format

For each set of ticket reservations appeared in the input, calculate the minimum number of seats required so that all reservations are satisfied without conflicts. Output a single star ‘*’ to signify the end of outputs.

样例输入

2
1 10 8
20 50 20
3
2 30 5
20 80 20
40 90 40
0
样例输出

20
60

  • 题目分析:
    有1-100个站点,乘客将会下订单预定从 s 站点到 t 站点中的 k 个座位,不同区间的座位之间可以自由分享,比如从1-30站点的座位可以给50-80站点的乘客。题目要我们找出每个样例中所需要的最小座位数。

  • 注意:1-10的座位也可以给10-20的乘客

  • 我的思路:
    对每一个站点都计算:

    由于数据比较小,进行区间覆盖,一个区间的需要的座位数覆盖到每一个站点上去,这样当所有的区间都覆盖完成之后,所有的站点需要的座位数就会出现一个峰值,那个峰值就是我们想要的。

  • 完整代码:

#include<stdio.h>
#include<string.h>
#define MAX 105
int main(void)
{
int n, s, t, k, max, seat[MAX];
while (scanf("%d", &n)!=EOF)
{
max = 0;
memset(seat, 0, sizeof(int)*MAX);
if (n == 0)
{
printf("*\n");
break;
}
while (n-- > 0)
{
scanf("%d%d%d", &s, &t, &k);
for (int i = s; i < t; i++)
seat[i] += k;
}
for (int i = 1; i < MAX; i++)
{
if (seat[i] > max)
max = seat[i];
}
printf("%d\n", max);
}
return 0;
}

B. Train Seats Reservation 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛的更多相关文章

  1. HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛)

    HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛) Panda Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: ...

  2. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛  M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...

  3. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

  4. 2017ICPC南宁赛区网络赛 Train Seats Reservation (简单思维)

    You are given a list of train stations, say from the station 111 to the station 100100100. The passe ...

  5. 2016 ACM/ICPC亚洲区大连站-重现赛 解题报告

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5979 按AC顺序: I - Convex Time limit    1000 ms Memory li ...

  6. 2017 ACM/ICPC Asia 南宁区 L The Heaviest Non-decreasing Subsequence Problem

    2017-09-24 20:15:22 writer:pprp 题目链接:https://nanti.jisuanke.com/t/17319 题意:给你一串数,给你一个处理方法,确定出这串数的权值, ...

  7. [刷题]ACM/ICPC 2016北京赛站网络赛 第1题 第3题

    第一次玩ACM...有点小紧张小兴奋.这题目好难啊,只是网赛就这么难...只把最简单的两题做出来了. 题目1: 代码: //#define _ACM_ #include<iostream> ...

  8. 2014ACM/ICPC亚洲区鞍山赛区现场赛1009Osu!

    鞍山的签到题,求两点之间的距离除以时间的最大值.直接暴力过的. A - Osu! Time Limit:1000MS     Memory Limit:262144KB     64bit IO Fo ...

  9. [刷题]ACM ICPC 2016北京赛站网络赛 D - Pick Your Players

    Description You are the manager of a small soccer team. After seeing the shameless behavior of your ...

随机推荐

  1. java程序: 倒计时的小程序 (GridPane, Timer, Calendar, SimpleDateFormat ...)

    倒计时程序 涉及到的东西: javafx简单的界面,布局,按钮,文本框,事件响应 java.util.Timer,用于定时 SimpleDateFormat用于在String和Date之间转换. ja ...

  2. Git for Android Studio 学习笔记

    http://learngitbranching.js.org/ 一个特别好的git学习教程 创建一个project,然后导入github

  3. Spring课程 Spring入门篇 4-6 Spring bean装配之基于java的容器注解说明--@ImportResource和@Value java与properties文件交互

    1 解析 1.1 这两个注解应用在什么地方 1.2 应用方式 1.3 xml方式实现取值 2 代码演练 2.1 @ImportResource和@Value代码演练 1 解析 1.1 这两个注解应用在 ...

  4. php自建静态博客步骤

    进入博客目录新建index.php页面 <?php require “XXXX/index.html”;//引入html页面 是否能进入localhost/xxx/index.php 注意,ph ...

  5. 算法——查找排序相关面试题和leetcode使用

    1.给两个字符串s和t,判断t是否为s的重新排列后组成的单词. s = "anagram", t = "nagaram", return true. s = & ...

  6. grunt 常用插件有哪些?

    作者:顾城链接:https://www.zhihu.com/question/21917526/answer/19747259来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出 ...

  7. Stage4--Python面向对象

    说在前面: Stage1-Stage4简单介绍一下Python语法,Stage5开始用python实现一些实际应用,语法的东西到处可以查看到,学习一门程序语言的最终目的是应用,而不是学习语法,语法本事 ...

  8. Android自定义之流式布局

    流式布局,好处就是父类布局可以自动的判断子孩子是不是需要换行,什么时候需要换行,可以做到网页版的标签的效果.今天就是简单的做了自定义的流式布局. 具体效果: 原理: 其实很简单,Measure  La ...

  9. SDET面试之感受篇。

    某年某月的某一天,我来到了太监村的一栋大厦,因为早到了半个小时,拿出来提前准备好的code随便的翻看着. 人家都说,面试头五分钟就已经决定了,是否能面试成功.所以,面试真正的真谛可能就是相面.什么写c ...

  10. 实现两个N×N矩阵的乘法,矩阵由一维数组表示

    此题的关键在于找到矩阵乘法的不变式! 例如: 矩阵a × 矩阵b = 矩阵ab 1 2 5 6 × 3 4 7 8 显然 ab[0] = a[0] * b[0] + a[1] * b[2] ab[1] ...