bzoj3816 矩阵变换
Description
Input
Output
Sample Input
5 10
0 1 0 2 3 0 0 4 0 5
2 0 3 0 0 1 0 5 4 0
4 2 1 0 0 0 3 0 5 0
0 3 0 4 0 5 0 1 2 0
1 0 0 3 2 4 5 0 0 0
5 10
0 1 0 2 3 0 0 4 0 5
2 0 3 0 0 1 0 5 4 0
4 2 1 0 0 0 3 0 5 0
0 3 0 4 0 5 0 1 2 0
1 0 0 3 2 4 5 0 0 0
Sample Output
5 4 3 1 2
explanation
两组输入数据是相同的。由于结果不唯一,你可以给出任意一组合法答案
HINT
正解:稳定婚姻问题。
我们可以发现,每一行更趋于选这一行靠前的数,每个数更趋于选它靠后的那一行。
进一步发现,如果每一行选的数没有$x$好,同时$x$选的行也没有这一行好,那么就会出现不合法情况。
所以这就是一个稳定婚姻问题,把行当成男生,数当成女生,跑一遍就行了。
#include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long using namespace std; int bg[][],gb[][],c[],p[],q[],Q[],n,m; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void work(){
n=gi(),m=gi();
for (RG int i=;i<=n;++i)
for (RG int j=;j<=n;++j) bg[i][j]=gb[i][j]=;
for (RG int i=;i<=n;++i) c[i]=;
for (RG int i=;i<=n;++i)
for (RG int j=,k;j<=m;++j){
k=gi(); if (!k) continue;
bg[i][++c[i]]=k,gb[k][i]=j;
}
RG int h=,t=;
for (RG int i=;i<=n;++i) Q[++t]=i,c[i]=p[i]=q[i]=;
while (h<t){
RG int x=Q[++h],v=bg[x][++c[x]];
if (!q[v]) q[v]=x,p[x]=v;
else if (gb[v][x]>gb[v][q[v]]) Q[++t]=q[v],q[v]=x,p[x]=v;
else --h;
}
for (RG int i=;i<=n;++i) printf("%d ",p[i]); puts(""); return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("matrix.in","r",stdin);
freopen("matrix.out","w",stdout);
#endif
RG int T=gi();
while (T--) work();
return ;
}
bzoj3816 矩阵变换的更多相关文章
- [BZOJ3816][清华集训2014]矩阵变换(稳定婚姻问题)
3816: 矩阵变换 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 803 Solved: 578[Submit][Status][Discuss] ...
- 【BZOJ3816】【清华集训2014】矩阵变换 稳定婚姻问题
题目描述 给出一个\(n\)行\(m\)列的矩阵\(A\), 保证满足以下性质: 1.\(m>n\). 2.矩阵中每个数都是\([0,n]\)中的自然数. 3.每行中,\([1,n]\)中每个自 ...
- osg矩阵变换节点-----平移旋转缩放
osg矩阵变换节点-----平移旋转缩放 转自:http://www.cnblogs.com/ylwn817/articles/1973396.html 平移旋转缩放这个三个是osg矩阵操作中,最常见 ...
- OpenGL 矩阵变换
Overview 几何数据--顶点位置,和标准向量(normal vectors),在OpenGL 管道raterization 处理过程之前可通过顶点操作(Vertex Operation)和基本组 ...
- 二维图形的矩阵变换(三)——在WPF中的应用矩阵变换
原文:二维图形的矩阵变换(三)--在WPF中的应用矩阵变换 UIElement和RenderTransform 首先,我们来看看什么样的对象可以进行变换.在WPF中,用于呈现给用户的对象的基类为Vis ...
- 二维图形的矩阵变换(二)——WPF中的矩阵变换基础
原文:二维图形的矩阵变换(二)--WPF中的矩阵变换基础 在前文二维图形的矩阵变换(一)——基本概念中已经介绍过二维图像矩阵变换的一些基础知识,本文中主要介绍一下如何在WPF中进行矩阵变换. Matr ...
- hdu 5671 矩阵变换
Matrix Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Su ...
- 从UIImage的矩阵变换看矩阵运算的原理
1.矩阵的基本知识: struct CGAffineTransform { CGFloat a, b, c, d; CGFloat tx, ty;}; CGAffineTransform CGAf ...
- VS2012下基于Glut 矩阵变换示例程序:
也可以使用我们自己的矩阵运算来实现OpenGL下的glTranslatef相应的旋转变换.需要注意的是OpenGL下的矩阵是列优先存储的. 示例通过矩阵运算使得圆柱或者甜圈自动绕Y轴旋转,可以单击鼠标 ...
随机推荐
- BankNote
# coding=utf-8 import pandas as pd import numpy as np from sklearn import cross_validation import te ...
- PIE SDK屏幕坐标和地图坐标转换
1. 功能简介 屏幕坐标和地图坐标转换,就是字面意思,将电脑屏幕的坐标转换为带有空间信息的地图坐标,主要运用PIE SDK地图控件的ToMapPoint()方法,而地图坐标转换为设备坐标(屏幕),用的 ...
- DbUtils(二) 结果集实例
单行数据处理:ScalarHandler ArrayHandler MapHandler BeanHandler 多行数据处理:BeanListHandler Abstract ...
- 20条IPTables防火墙规则用法! [转]
20条IPTables防火墙规则用法! 导读 管理网络流量是系统管理员必需处理的最棘手工作之一,我们必需规定连接系统的用户满足防火墙的传入和传出要求,以最大限度保证系统免受攻击.很多用户把 Linux ...
- C# 清空数组Array.Clear
using System; using System.Collections; using System.Collections.Generic; using UnityEngine; public ...
- Java中forEach, 用来遍历数组
这里的for是Java中forEach, 用来遍历数组的.for(int i : d) 就是遍历int型数组d的 每一次访问数组d的时候读取的数据放入int型的i中.和for(int i=0;i< ...
- matlab遍历文件制作自己的数据集 .mat文件
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/9115788.html 看到深度学习里面的教学动不动就是拿MNIST数据集,或者是IMGPACK ...
- 最好用的数据存储Easy Save2讲解
转载:http://www.manew.com/thread-100109-1-1.html 今天抽时间学习了“Easy Save2”插件,版本v2.6.3 我个人觉得这个插件是做数据存取最好的 ...
- C++程序设计基础(5)sizeof的使用
1.知识点 (1)sizeof是一个单目运算发,而不是一个函数,其用于获取操作数所占内存空间的字节数. (2)sizeof的操作数可以使类型名,也可以是表达式,如果是类型名则直接获得该类型所占字节数, ...
- linux查看占用内存最多的程序
1.linux查看占用内存最多的程序 ps aux|head -1;ps aux|grep -v PID|sort -rn -k +4|head 2.查看占用cpu最多的程序 ps aux|head ...