洛谷 P2529 [SHOI2001]击鼓传花 解题报告
P2529 [SHOI2001]击鼓传花
题意:求出\(n!\)末尾最后一位非0数字
数据范围:\(n<=10^{100}\)
我们从简单的开始考虑
1.显然,\(n!\)可以被这么表示
\(n!=c \times 2^a \times 5^b\)
显然有\(a>b\)
2.末尾的元素即为\(c \%10 \times 2^{a-b} \%10\)
显然这个复杂度是我们所不能接受的
我们发现\(5\)很特殊
我们把所有\(5\)的倍数都取出来(注意取出的是\(5\)的倍数而不是因数\(5\)),给每个\(5\)配一个\(2\)
相当于把\(5*1,5*2,5*3,...,5*n\)中的\(5\)约去,发现剩下的是一个规模1/5的相同子问题
令\(fac(i)\)表示\(i!\)的末尾非0数字,则有\(fac(i)=fac(\lfloor i/5 \rfloor) \times ? \% 10\)
我们想办法求出\(?\)的贡献
因为因子\(2\)消不完,所以末尾必须是偶数
发现剩下的数可以直接\(mod\) \(10\)了
把每\(20\)位分成一块,对末位的贡献为\(6\)
因为$6 \times $任意偶数,末尾不变
所以答案只需要把20位以内的额外贡献找到就可以
我们考虑直接把这20位打表,然后递归处理子问题
复杂度可以接受(高精度我不会算)
Code:
#include <cstdio>
#include <cstring>
const int N=102;
struct l_num
{
int num[N];
l_num()
{
memset(num,0,sizeof(num));
}
l_num(char c[])
{
memset(num,0,sizeof(num));
num[0]=strlen(c);
for(int i=1;i<=num[0];i++)
num[i]=c[num[0]-i]-'0';
}
l_num friend operator /(l_num n1,int n2)
{
for(int i=n1.num[0];i>1;i--)
{
n1.num[i-1]+=n1.num[i]%n2*10;
n1.num[i]/=n2;
}
n1.num[1]/=n2;
if(!n1.num[n1.num[0]]) --n1.num[0];
return n1;
}
int friend operator %(l_num n1,int n2)
{
return n1.num[0]==1?n1.num[1]:(n1.num[2]&1)*10+n1.num[1];
}
};
int init[21]={1,1,2,6,4,2,2,4,2,8,4,4,8,4,6,8,8,6,8,2,6};
char c[103];
int cal(l_num fac)
{
return fac.num[0]?init[fac%20]*cal(fac/5)%10:1;
}
int main()
{
int t=5;
while(t--)
{
scanf("%s",c);
l_num fac(c);
printf("%d\n",cal(fac));
}
return 0;
}
2018.8.9
洛谷 P2529 [SHOI2001]击鼓传花 解题报告的更多相关文章
- 洛谷 P2527 [SHOI2001]Panda的烦恼 解题报告
P2527 [SHOI2001]Panda的烦恼 题目描述 panda是个数学怪人,他非常喜欢研究跟别人相反的事情.最近他正在研究筛法,众所周知,对一个范围内的整数,经过筛法处理以后,剩下的全部都是质 ...
- 洛谷 P2530 [SHOI2001]化工厂装箱员 解题报告
P2530 [SHOI2001]化工厂装箱员 题目描述 118号工厂是世界唯一秘密提炼锎的化工厂,由于提炼锎的难度非常高,技术不是十分完善,所以工厂生产的锎成品可能会有3种不同的纯度,A:100%,B ...
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P2611 [ZJOI2012]小蓝的好友 解题报告
P2611 [ZJOI2012]小蓝的好友 题目描述 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的关键人物--小蓝的好友. 在帮小 ...
- 洛谷 P2114 [NOI2014]起床困难综合症 解题报告
P2114 [NOI2014]起床困难综合症 题目描述 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作 ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
随机推荐
- python3 练习题100例 (二十六)回文数判断
题目内容: 给一个5位数,判断它是不是回文数,是则输出yes,不是则输出no. 例如12321是回文数,它的个位与万位相同,十位与千位相同. 输入格式: 共一行,为一个5位数. 输出格式: 共一行,y ...
- 爬虫之request模块高级
一.cookie&session cookie:服务器端使用cookie来记录客户端的状态信息 实现流程: 执行登陆操作(获取cookie) 在发起个人主页请求时,需要将cookie携带到该请 ...
- Andrew Ng Machine Learning Coursera学习笔记
课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computati ...
- POLYGON(动态规划)
学校老师布置的一道动规的题目,要求下次上课前AC.周一一放学就回家写,调试了一会儿OK了.在这边记录一下解题的思路和过程,也作为第一篇随笔,就是随便之一写,您也就随便之一看.有问题望你指出,多多包涵. ...
- LeetCode:21. Merge Two Sorted Lists(Easy)
1. 原题链接 https://leetcode.com/problems/merge-two-sorted-lists/description/ 2. 题目要求 给出两个已经从小到大排序的链表ls1 ...
- OrCAD设置原理图页面大小
1. 右键要修改的原理图文件 2. 选择适合的尺寸
- 用起来超爽的Maven——进阶篇
以后随着使用的maven的频率增加,此文件会越来越大,也是为什么需要把默认C:\Users\Administrator\.m2 \repository目录改变为D:/OpenSources/repos ...
- python统计日志小脚本
日志格式如下: [ 2016-06-28T00:10:33-03:00 ] xxx.xx.xx.xxx /api/index/xxx/ ERR: code:400 message: params: c ...
- CCF-NOIP-2018 提高组(复赛) 模拟试题(三)
T1 取球游戏 问题描述 现有\(N\)个小球,依次编号为\(1\)到\(N\),这些小球除了编号以外没有任何区别.从这\(N\)个小球中取出\(M\)个,请问有多少种取球方案使得在取出的\(M\)个 ...
- [leetcode-640-Solve the Equation]
Solve a given equation and return the value of x in the form of string "x=#value". The equ ...