Description

Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.
For the
sake of simplicity, we model a city as a rectangular grid. An address in
the city is denoted by two integers: the street and avenue number. The
time needed to get from the address a, b to c, d by taxi is |a - c| + |b
- d| minutes. A cab may carry out a booked ride if it is its first ride
of the day, or if it can get to the source address of the new ride from
its latest,at least one minute before the new ride's scheduled
departure. Note that some rides may end after midnight.

Input

On
the first line of the input is a single positive integer N, telling the
number of test scenarios to follow. Each scenario begins with a line
containing an integer M, 0 < M < 500, being the number of booked
taxi rides. The following M lines contain the rides. Each ride is
described by a departure time on the format hh:mm (ranging from 00:00 to
23:59), two integers a b that are the coordinates of the source address
and two integers c d that are the coordinates of the destination
address. All coordinates are at least 0 and strictly smaller than 200.
The booked rides in each scenario are sorted in order of increasing
departure time.

Output

For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.

Sample Input

2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11

Sample Output

1
2

Source

Northwestern Europe 2004

把每一次的路途(起点-终点)看成一个结点的话。如果一辆出租车能够完成两两路途,就表示两个结点之间存在匹配。

如果建的图是无向图:

最小路径覆盖=结点数-最大匹配数/2

如果建的是有向图:

最小路径覆盖=结点数-最大匹配数

 #include <stdio.h>
#include <string.h>
#include <math.h>
#define MAXN 550 int bmap[MAXN][MAXN];
bool bmask[MAXN];//寻找增广路径时的标志数组
int nx,ny;//nx左集合的顶点数目,ny为右集合的顶点数目
int cx[MAXN];//cx[i]表示左集合i顶点所匹配到的右集合的顶点序号
int cy[MAXN];//cy[i]表示右集合i顶点所匹配到的左集合的顶点序号 struct Node{
int bx,by,ex,ey;
int begin,end;
}nod[MAXN]; //寻找增广路径
int findpath(int u){
for(int i=; i<ny; i++){
//如果匹配,且i不在增广路上
if( bmap[u][i] && !bmask[i] ){
//把i加到增广路上
bmask[i]=;
//如果i是未盖点或者从i出发有增广路
if(cy[i]==- || findpath(cy[i])){
//修改对应的项为u,表示有增广路
cy[i]=u;
return ;
}
}
}
return ;
} int hungray(){
int res=;
for(int i=; i<nx; i++){
cx[i]=-;
}
for(int j=; j<ny; j++){
cy[j]=-;
}
for(int i=; i<nx; i++){
//如果从左边开始是未盖点的
if(cx[i]==-){
for(int j=; j<ny; j++){
bmask[j]=;
}
res+=findpath(i);
}
}
return res;
} int main()
{
int n,t;
int a,b,c,d;
int h,m;
scanf("%d",&t);
while( t-- ){
scanf("%d",&n);
nx=n;
ny=n;
for(int i=; i<n; i++){
scanf("%d:%d" ,&h ,&m);
scanf("%d %d %d %d" ,&a ,&b ,&c ,&d);
nod[i].bx=a;
nod[i].by=b;
nod[i].ex=c;
nod[i].ey=d;
nod[i].begin=*h+m;
nod[i].end=nod[i].begin+fabs(a-c)+fabs(b-d);
}
//建图
memset(bmap , ,sizeof(bmap));
for(int i=; i<n; i++){
for(int j=i+; j<n; j++){
int dis= fabs(nod[j].bx-nod[i].ex) + fabs(nod[j].by-nod[i].ey);
if( nod[i].end +dis < nod[j].begin ){
bmap[i][j]=;
}
}
}
int ans=hungray();
printf("%d\n",n-ans);
}
return ;
}

TOJ 1023 Taxi Cab Scheme的更多相关文章

  1. 【HDU1960】Taxi Cab Scheme(最小路径覆盖)

    Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  2. poj 2060 Taxi Cab Scheme (二分匹配)

    Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5710   Accepted: 2393 D ...

  3. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  4. Taxi Cab Scheme POJ && HDU

    Online Judge Problem Set Authors Online Contests User Web Board Home Page F.A.Qs Statistical Charts ...

  5. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  6. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  7. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  8. HDU 1350 Taxi Cab Scheme

    Taxi Cab Scheme Time Limit: 10000ms Memory Limit: 32768KB This problem will be judged on HDU. Origin ...

  9. poj2060——Taxi Cab Scheme(最小路径覆盖)

    Description Running a taxi station is not all that simple. Apart from the obvious demand for a centr ...

随机推荐

  1. win8 附件数据库失败解决方案《1》

    sql server 2005附加数据库错误:尝试打开或创建物理文件 无法打开物理文件 "E:\works\database\northwnd\northwnd.mdf".操作系统 ...

  2. 【C#】特性标签中的属性解释

    第一个为特性作用于类,或者接口(interface) 第二个为是否允许重叠定义,就是连续写两个特性标签 第三个为是否继承,当继承时候,除输出子类外,父类也将输出

  3. 去掉textarea 右下角图标 resize: none;

    如下图默认右下角有小图标: 加个样式: resize: none;就可以了:

  4. win7 64位环境下,为python2.7 安装pip

    第一步: 安装python并配置好环境变量 参见:http://blog.csdn.net/donggege214/article/details/52062855 第二步: 下载setuptools ...

  5. 【bzoj4836】二元运算 分治FFT

    Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...

  6. [SCOI2009]windy数 BZOJ1026 数位dp

    题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? 输入输出格式 输 ...

  7. python之freshman00

    编译型vs解释型 编译型优点:编译器一般会有预编译的过程对代码进行优化.因为编译只做一次,运行时不需要编译,所以编译型语言的程序执行效率高.可以脱离语言环境独立运行.缺点:编译之后如果需要修改就需要整 ...

  8. 原生JS实现返回顶部和滚动锚点

    ;(function (window,doc,undefined) { function rollingAnchor(){ this.timer =''; } rollingAnchor.protot ...

  9. 1011 A+B 和 C (15 分)

    #include <iostream> using namespace std; int main(){ int t; cin >> t; double a, b, c; // ...

  10. CMakeFiles/species.inc.dir/build.make:57: recipe for target 'CMakeFiles/species.inc' failed

    新装的WSL编译2017.3.4版本的mfix,只要涉及到带化学反应的就会报错: 由于之前从没遇到过,对cmake又不熟悉,所以有些摸不着头脑,后来仔细查看报错提示,发现是在CMakeFiles/sp ...