spark第四篇:Running Spark on YARN
确保HADOOP_CONF_DIR或者YARN_CONF_DIR指向hadoop集群配置文件目录。这些配置用来写数据到hdfs以及连接yarn ResourceManager。(在$SPARK_HOME/conf/spark-env.sh中,添加export HADOOP_CONF_DIR=/home/koushengrui/app/hadoop/etc/hadoop)。The configuration contained in this directory will be distributed to the YARN cluster so that all containers used by the application use the same configuration. If the configuration references Java system properties or environment variables not managed by YARN, they should also be set in the Spark application’s configuration (driver, executors, and the AM when running in client mode).
spark on yarn 有两种部署模式。In cluster mode, the Spark driver runs inside an application master process which is managed by YARN on the cluster, and the client can go away after initiating the application. In client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN。cluster 模式,spark 驱动程序运行在应用主进程内。client 模式,驱动程序运行在客户端进程中,应用主进程只负责向yarn 请求资源。
不像spark standalone 和 mesos 模式,这两种模式下master 的地址由--master 参数指定,yarn 模式,ResourceManager 的地址从hadoop 配置中取。因此,--master 参数的值是yarn。
以cluster 模式启动应用:
./spark-submit --class class_name --master yarn --deploy-mode cluster [options] <app jar> [app options]
例如:
./spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
--queue queue_name \
/path/spark-example*.jar \
10
The above starts a YARN client program which starts the default Application Master. Then SparkPi will run as a child thread of Application Master. The client will periodically poll the Application Master for status updates and display them in the console. The client will exit once your application has finished running。
以client 模式启动应用:
和上面一样,除了--deploy-mode 参数值为client
./spark-submit --class class_name --master yarn --deploy-mode client [options] <app jar> [app options]
例如可以以client 模式运行spark-shell:
./spark-shell --master yarn --deploy-mode client
添加其他jar
利用spark把hive数据导到hbase:
spark-submit \
--class com.kou.spark.util.Hive2Hbase \
--master yarn \
--deploy-mode client \
--executor-memory 500m \
--driver-memory 500m \
--num-executors 2 \
--executor-cores 2 \
--queue ${spark_queuename} \
--conf spark.sql.autoBroadcastJoinThreshold=20971520 \
--conf spark.default.parallelism=40 \
--conf spark.sql.shuffle.partitions=40 \
--conf spark.speculation=false \
--conf spark.task.maxFailures=40 \
--conf spark.akka.timeout=300 \
--conf spark.network.timeout=300 \
--conf spark.yarn.max.executor.failures=40 \
--conf spark.executor.extraJavaOptions="-XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:+ParallelRefProcEnabled -XX:+CMSClassUnloadingEnabled -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+HeapDumpOnOutOfMemoryError -verbose:gc " \
spark-hive2Hbase.jar "${appName}" "${sql}" "${outputTable}" "${phoenix_jdbc_url}"
hiveContext.sql("use sx_ela_safe")
hiveContext.sql("set mapred.job.queue.name=" + HDP_QUEUE_NAME)
hiveContext.sql("set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat")
hiveContext.sql("set hive.merge.mapredfiles=true")
hiveContext.sql("set hive.merge.smallfiles.avgsize=100000000")
hiveContext.sql("set mapred.combine.input.format.local.only=false")
// 创建上下文
val sparkConf = new SparkConf().setAppName(s"${args(4)}")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.set("spark.kryoserializer.buffer.max", "300m")
.set("spark.sql.parquet.compression.codec", "snappy")
.set("spark.sql.parquet.mergeSchema", "true")
.set("spark.sql.parquet.binaryAsString", "true")
.set("spark.streaming.kafka.maxRatePerPartition", s"${args(2)}")
def InitEnvConfig(conf: SparkConf) = {
brokers = conf.get(KAFKA_METADATA_BROKER_LIST)
zkConnectString = conf.get(ZOOKEEPER_QUORUM)
phoenixZkUrl = conf.get(PHOENIX_JDBC_URL)
hdfsRootPath = conf.get(HDFS_ROOT_PATH)
spark_deploy_mode = conf.get(SPARK_MASTER_URL)
HDP_QUEUE_NAME = conf.get(HADOOP_QUEUE_NAME)
}
spark第四篇:Running Spark on YARN的更多相关文章
- spark第六篇:Spark Streaming Programming Guide
预览 Spark Streaming是Spark核心API的扩展,支持高扩展,高吞吐量,实时数据流的容错流处理.数据可以从Kafka,Flume或TCP socket等许多来源获取,并且可以使用复杂的 ...
- spark第十篇:Spark与Kafka整合
spark与kafka整合需要引入spark-streaming-kafka.jar,该jar根据kafka版本有2个分支,分别是spark-streaming-kafka-0-8和spark-str ...
- 第四篇:Spark SQL Catalyst源码分析之TreeNode Library
/** Spark SQL源码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心运行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,但是发现 ...
- spark第七篇:Spark SQL, DataFrame and Dataset Guide
预览 Spark SQL是用来处理结构化数据的Spark模块.有几种与Spark SQL进行交互的方式,包括SQL和Dataset API. 本指南中的所有例子都可以在spark-shell,pysp ...
- Running Spark on YARN
Running Spark on YARN 对 YARN (Hadoop NextGen) 的支持是从Spark-0.6.0开始的,后续的版本也一直持续在改进. Launching Spark on ...
- Spark(四十九):Spark On YARN启动流程源码分析(一)
引导: 该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析. spark-submit的入口函数 一般提交一个spark作业的方式采用spark-submit来提交 ...
- spark调优篇-Spark ON Yarn 内存管理(汇总)
本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰 内存相关参数 spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也 ...
- spark调优篇-spark on yarn web UI
spark on yarn 的执行过程在 yarn RM 上无法直接查看,即 http://192.168.10.10:8088,这对于调试程序很不方便,所以需要手动配置 配置方法 1. 配置 spa ...
- Spark(四十四):使用Java调用spark-submit.sh(支持 --deploy-mode client和cluster两种方式)并获取applicationId
之前也介绍过使用yarn api来submit spark任务,通过提交接口返回applicationId的用法,具体参考<Spark2.3(四十):如何使用java通过yarn api调度sp ...
随机推荐
- javascript总结17:javascript 函数简介
1 释义:函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块. 2 格式:通过 function 关键字. function test(){ alert("您好"); } ...
- 日期多选插件Kalendae.js
在项目中要实现日期多选的功能,于是在网上找到Kalendae.js,此文主要记录本人对于Kalendae.js的一些用法,以便以后查阅,希望对读者也有所帮助 主要内容如下: Kalendaejs一句话 ...
- 关于Java异常一段很有意思的代码
今天学习了Java的异常,讲到try-catch-finally时,老师演示了一段代码,觉得很有意思,很能反映出其执行的过程,让自己有点绕,特意记录一下. 只要代码执行到try代码内部, 不管有没有异 ...
- Lua入门(一)
嵌入式语言 作为一门扩展式语言,Lua 没有 "main" 程序的概念: 它只能 嵌入 一个宿主程序中工作, 该宿主程序被称为 被嵌入程序 或者简称 宿主 . 宿主程序可以调用函数 ...
- Android 学习笔记 文本文件的读写操作
activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android&qu ...
- [Win32::Console]Perl终端版生命游戏
环境,WinXP/Win7 Perl 5.16 默认循环1000次,按ESC提前退出 use strict; use Term::ReadKey; use Win32::Console; use T ...
- 316. Remove Duplicate Letters (accumulate -> count of the difference elements in a vector)
Given a string which contains only lowercase letters, remove duplicate letters so that every letter ...
- Django 学习:为窗体加上防机器人的验证机制(验证码功能)
这里我们使用 django-simple-captcha 模块,官方介绍如下:https://github.com/mbi/django-simple-captcha 一键安装: pip instal ...
- 题解 P2863 【[USACO06JAN]牛的舞会The Cow Prom】
题目链接 赤裸裸的板子,就加一个特判就行.直接上代码 #include<stdio.h> #include<algorithm> #include<iostream> ...
- CF1137F Matches Are Not a Child's Play(树链剖分)
题面 我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当前序列的最末端,最后只剩下一个节点时将该节点的编号加入到结尾. 例如对于上图中的树,它的删除序列为:2 4 3 1 ...