组合枚举n/i/i,贡献为miu倍

/*H E A D*/
int mu[maxn],prime[maxn],cnt;
bool isprime[maxn];
void sai(int n){
mu[0]=0;mu[1]=1;
rep(i,2,n) isprime[i]=1;
rep(i,2,n){
if(isprime[i]){
prime[++cnt]=i;
mu[i]=-1;
}
rep(j,1,cnt){
if(i*prime[j]>n) break;
isprime[i*prime[j]]=0;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
}
ll C(ll x){
ll rt=sqrt(x+0.5),ans=0;
rep(i,1,rt){
ans+=x/i/i*mu[i];
}
return ans;
}
int main(){
sai((int)1e6-11);
int T=read();
while(T--){
ll x=read();
ll l=x,r=2e9+50,mid,ans;
while(r>=l){
mid=l+r>>1;
if(C(mid)>=x){
r=mid-1;
ans=mid;
}
else{
l=mid+1;
}
}
println(ans);
}
return 0;
}

BZOJ - 2440 容斥定理的更多相关文章

  1. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  2. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  4. hdu_5213_Lucky(莫队算法+容斥定理)

    题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...

  5. How Many Sets I(容斥定理)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...

  6. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  7. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. linux下的同步与互斥

    linux下的同步与互斥 谈到linux的并发,必然涉及到线程之间的同步和互斥,linux主要为我们提供了几种实现线程间同步互斥的 机制,本文主要介绍互斥锁,条件变量和信号量.互斥锁和条件变量包含在p ...

  2. Use SFTP in Linux (转)

    From http://www.cnblogs.com/chen1987lei/archive/2010/11/26/1888391.html sftp 是一个交互式文件传输程式.它类似于 ftp, ...

  3. Django--admin后台

    需求 通过后台和models​操作数据库表 实现 1.后台中看到数据库中的表 app01/admin.py 1 2 from app01 import models admin.site.regist ...

  4. CF547D Mike and Fish

    欧拉回路,巧妙的解法. 发现每一个点$(x, y)$实际上是把横坐标和$x$和纵坐标$y$连一条线,然后代进去跑欧拉回路,这样里一条边对应了一个点,我们只要按照欧拉回路间隔染色即可. 注意到原图可能并 ...

  5. keys()

    keys():返回一个数组,里面是符合匹配模式的键列表 $redis = new Redis(); $redis->connect('127.0.0.1', 6379); $pattern = ...

  6. [GO]new函数的使用

    new函数的作用其实就是动态分配一个空间,我们只需要进行使用,不需要考虑它的内存释放的它的生命周期 package main import "fmt" func main() { ...

  7. Selenium如何定位动态id/class的元素?

     今天再给大家分享一个定位不到元素的原因——动态id. 没有打开新页面.没有alert.没有frame.加了等待时间,但是还是定位不到元素?很有可能是你要定位的元素的属性是动态的,即每次打开页面,这个 ...

  8. git之对比svn

    关于git的发展和历史介绍网上有很多资料,大家可以自行去了解,这里给大家一个传送门git介绍在这里我就不多说了.我们今天本篇文章的定位就是帮助大家来了解一下关于git和svn之间的区别及git的安装. ...

  9. 使用dockerfile-maven-plugin发布docker到私有仓库

    要想拥有私有docker仓库,需要安装registry镜像,最新版时2.0,具体可以看文档:https://docs.docker.com/registry/. 1. docker pull regi ...

  10. Laravel框架中的数据库CURD操作、连贯操作、链式操作的用法

    Laravel是一套简洁.优雅的PHP Web开发框架(PHP Web Framework).它可以让你从面条一样杂乱的代码中解脱出来:它可以帮你构建一个完美的网络APP,而且每行代码都可以简洁.富于 ...