转发请注明原创地址:http://www.cnblogs.com/dongxiao-yang/p/7700600.html

flink-connector-kafka consumer的topic分区分配源码》一文提到了在flink-connector-kafka的consumer初始化的时候有三种offset提交模式:KAFKA_PERIODIC,DISABLED和ON_CHECKPOINTS。

其中ON_CHECKPOINTS表示在flink做完checkpoint后主动向kafka提交offset的方法,本文主要分析一下flink-connector-kafka在源码如何使用checkpoint机制实现offset的恢复和提交。

flink conusmer的实现基类FlinkKafkaConsumerBase定义如下,这个类实现了了与checkpoin相关的三个接口CheckpointedFunction,CheckpointedRestoring<HashMap<KafkaTopicPartition, Long>>,CheckpointListener。根据官网文档,CheckpointedRestoring的restoreState()方法已经被CheckpointedFunction的initializeState取代,所以重点关注三个方法实现

1initializeState()  实例初始化或者recover的时候调用

2snapshotState() 每次创建checkpoint的时候调用

3 notifyCheckpointComplete() 每次checkpoint结束的时候调用

public abstract class FlinkKafkaConsumerBase<T> extends RichParallelSourceFunction<T> implements
CheckpointListener,
ResultTypeQueryable<T>,
CheckpointedFunction,
CheckpointedRestoring<HashMap<KafkaTopicPartition, Long>> {

initializeState

    @Override
public final void initializeState(FunctionInitializationContext context) throws Exception { // we might have been restored via restoreState() which restores from legacy operator state
if (!restored) {
restored = context.isRestored();
} OperatorStateStore stateStore = context.getOperatorStateStore();
offsetsStateForCheckpoint = stateStore.getSerializableListState(DefaultOperatorStateBackend.DEFAULT_OPERATOR_STATE_NAME); if (context.isRestored()) {
if (restoredState == null) {
restoredState = new HashMap<>();
for (Tuple2<KafkaTopicPartition, Long> kafkaOffset : offsetsStateForCheckpoint.get()) {
restoredState.put(kafkaOffset.f0, kafkaOffset.f1);
} LOG.info("Setting restore state in the FlinkKafkaConsumer.");
if (LOG.isDebugEnabled()) {
LOG.debug("Using the following offsets: {}", restoredState);
}
}
} else {
LOG.info("No restore state for FlinkKafkaConsumer.");
}
}

这个方法的逻辑比较简单,在task恢复的时候从stateStore中序列化出来之前存储的ListState<Tuple2<KafkaTopicPartition, Long>> 状态数据,并放到restoredState这个变量,用于下面open方法直接恢复对应的分区和offset起始值。

snapshotState

    @Override
public final void snapshotState(FunctionSnapshotContext context) throws Exception {
if (!running) {
LOG.debug("snapshotState() called on closed source");
} else { offsetsStateForCheckpoint.clear(); final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
if (fetcher == null) {
// the fetcher has not yet been initialized, which means we need to return the
// originally restored offsets or the assigned partitions
for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition : subscribedPartitionsToStartOffsets.entrySet()) {
offsetsStateForCheckpoint.add(Tuple2.of(subscribedPartition.getKey(), subscribedPartition.getValue()));
} if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
// the map cannot be asynchronously updated, because only one checkpoint call can happen
// on this function at a time: either snapshotState() or notifyCheckpointComplete()
pendingOffsetsToCommit.put(context.getCheckpointId(), restoredState);
}
} else {
HashMap<KafkaTopicPartition, Long> currentOffsets = fetcher.snapshotCurrentState(); if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
// the map cannot be asynchronously updated, because only one checkpoint call can happen
// on this function at a time: either snapshotState() or notifyCheckpointComplete()
pendingOffsetsToCommit.put(context.getCheckpointId(), currentOffsets);
} for (Map.Entry<KafkaTopicPartition, Long> kafkaTopicPartitionLongEntry : currentOffsets.entrySet()) {
offsetsStateForCheckpoint.add(
Tuple2.of(kafkaTopicPartitionLongEntry.getKey(), kafkaTopicPartitionLongEntry.getValue()));
}
} if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
// truncate the map of pending offsets to commit, to prevent infinite growth
while (pendingOffsetsToCommit.size() > MAX_NUM_PENDING_CHECKPOINTS) {
pendingOffsetsToCommit.remove(0);
}
}
}
}

snapshot方法创建checkpoint的做法是把当前的KafkaTopicPartition和目前消费到的offset值不断存放到offsetsStateForCheckpoint这个state对象里,然后把当前的checkpointid和对应的offset存到pendingOffsetsToCommit这个linkmap。当前offset的获取分两个情况,初始化的时候(if (fetcher == null) {...})和fetcher已经初始化成功,初始化的时候从restoredState获取,正常运行中获取fetcher.snapshotCurrentState()。

notifyCheckpointComplete

public final void notifyCheckpointComplete(long checkpointId) throws Exception {
if (!running) {
LOG.debug("notifyCheckpointComplete() called on closed source");
return;
} final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
if (fetcher == null) {
LOG.debug("notifyCheckpointComplete() called on uninitialized source");
return;
} if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
// only one commit operation must be in progress
if (LOG.isDebugEnabled()) {
LOG.debug("Committing offsets to Kafka/ZooKeeper for checkpoint " + checkpointId);
} try {
final int posInMap = pendingOffsetsToCommit.indexOf(checkpointId);
if (posInMap == -1) {
LOG.warn("Received confirmation for unknown checkpoint id {}", checkpointId);
return;
} @SuppressWarnings("unchecked")
HashMap<KafkaTopicPartition, Long> offsets =
(HashMap<KafkaTopicPartition, Long>) pendingOffsetsToCommit.remove(posInMap); // remove older checkpoints in map
for (int i = 0; i < posInMap; i++) {
pendingOffsetsToCommit.remove(0);
} if (offsets == null || offsets.size() == 0) {
LOG.debug("Checkpoint state was empty.");
return;
} fetcher.commitInternalOffsetsToKafka(offsets, offsetCommitCallback);
} catch (Exception e) {
if (running) {
throw e;
}
// else ignore exception if we are no longer running
}
}
}

notifyCheckpointComplete主要是在checkpoint结束后在ON_CHECKPOINTS的情况下向kafka集群commit offset,方法调用时会拿到已经完成的checkpointid,从前文的pendingOffsetsToCommit列表里找到对应的offset。如果判断索引不存在,则直接退出。否则,移除该索引对应的快照信息,然后将小于当前索引(较旧的)的快照信息也一并移除(这一点我之前解释过,因为所有的检查点都是按时间递增有序的)。最后将当前完成的检查点对应的消息的偏移量进行commit,也即commitOffsets。只不过这里该方法被定义为抽象方法,因为Kafka不同版本的API差别的原因,由适配不同版本的consumer各自实现,目前kafka09和010实现都是在Kafka09Fetcher内实现的commitInternalOffsetsToKafka方法。

参考文档:

http://blog.csdn.net/yanghua_kobe/article/details/51503885

flink-connector-kafka consumer checkpoint源码分析的更多相关文章

  1. flink checkpoint 源码分析 (二)

    转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8260370.html flink checkpoint 源码分析 (一)一文主要讲述了在JobMan ...

  2. Flink源码阅读(二)——checkpoint源码分析

    前言 在Flink原理——容错机制一文中,已对checkpoint的机制有了较为基础的介绍,本文着重从源码方面去分析checkpoint的过程.当然本文只是分析做checkpoint的调度过程,只是尽 ...

  3. Kafka 探险 - 生产者源码分析: 核心组件

    这个 Kafka 的专题,我会从系统整体架构,设计到代码落地.和大家一起杠源码,学技巧,涨知识.希望大家持续关注一起见证成长! 我相信:技术的道路,十年如一日!十年磨一剑! 往期文章 Kafka 探险 ...

  4. 高吞吐量的分布式发布订阅消息系统Kafka之Producer源码分析

    引言 Kafka是一款很棒的消息系统,今天我们就来深入了解一下它的实现细节,首先关注Producer这一方. 要使用kafka首先要实例化一个KafkaProducer,需要有brokerIP.序列化 ...

  5. Kafka 0.8源码分析—ZookeeperConsumerConnector

    1.HighLevelApi High Level Api是多线程的应用程序,以Topic的Partition数量为中心.消费的规则如下: 一个partition只能被同一个ConsumersGrou ...

  6. flink checkpoint 源码分析 (一)

    转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8029356.html checkpoint是Flink Fault Tolerance机制的重要构成 ...

  7. flink1.7 checkpoint源码分析

    初始化state类 //org.apache.flink.streaming.runtime.tasks.StreamTask#initializeState initializeState(); p ...

  8. Flink命令行提交job (源码分析)

    这篇文章主要介绍从命令行到任务在Driver端运行的过程 通过flink run 命令提交jar包运行程序 以yarn 模式提交任务命令类似于: flink run -m yarn-cluster X ...

  9. Kafka#4:存储设计 分布式设计 源码分析

    https://sites.google.com/a/mammatustech.com/mammatusmain/kafka-architecture/4-kafka-detailed-archite ...

随机推荐

  1. luogu P1215 [USACO1.4]母亲的牛奶 Mother's Milk

    题目描述 农民约翰有三个容量分别是A,B,C升的桶,A,B,C分别是三个从1到20的整数, 最初,A和B桶都是空的,而C桶是装满牛奶的.有时,农民把牛奶从一个桶倒到另一个桶中,直到被灌桶装满或原桶空了 ...

  2. 【数论】【快速幂】CODEVS 2952 细胞分裂 2

    裸快速幂取模,背诵模板用. #include<cstdio> using namespace std; typedef long long LL; LL n=,m,q; LL Quick_ ...

  3. [CF842E]Nikita and game

    [CF842E]Nikita and game 题目链接: CF842E 博客地址: [CF842E]Nikita and game - skylee 题目大意: 一棵树初始只有一个编号为\(1\)的 ...

  4. Android介绍

    Android系统的底层建立在Linux系统之上,该平台有操作系统,中间件,用户界面和应用软件4层组成,它采用一种被称为软件叠层(Software Stack)的方式进行构建. 1.应用程序层:And ...

  5. SecureCRT实现跳板机自动登录

    背景: 1.通常运维会开放几个内网的机器能跳转到外网机器进行访问,这样的就是跳板机. 2.比如线上有120.0.0.2这台机器,而内网192.168.1.2这台连接了VPN,能通过SSH登录120.0 ...

  6. 解密所有APP运行过程中的内部逻辑(转)

    转贴地址:http://www.freebuf.com/tools/54562.html 0×01前言 这年头,apk 全都是加密啊,加壳啊,反调试啊,小伙伴们表示已经不能愉快的玩耍了.静态分析越来越 ...

  7. Sublime Text:格式化插件HTML-CSS-JS Prettify

    Sublime Text:插件HTML-CSS-JS Prettify可以格式化HMTL/CSS/JS 1.安装Node.js 2.Sublime中ctrl+shift+p,输入ip: 3.点击Ins ...

  8. 关于 modelNameLike 查询无数据

    ---恢复内容开始--- 1.今天在测试的时候发现 model中的name不能模糊查询. ModelQuery modelQuery = repositoryService.createModelQu ...

  9. Python实现局域网内屏幕广播的技术要点分析(转载)

    转载:https://mp.weixin.qq.com/s?timestamp=1498531736&src=3&ver=1&signature=Eq6DPvkuGJi*G5s ...

  10. vmware已经全面支持open-vm-tools

    以后不用再为vmware vm单独安装vmware-tools了,vmware已经全面支持open-vm-tools, 今天突然发现安装vmware-tools时出现deprecated提示,原来vm ...