详谈P(查准率),R(查全率),F1值
怎么来的?
我们平时用的精度accuracy,也就是整体的正确率
acc = predict_right_num / predict_num
这个虽然常用,但不能满足所有任务的需求。比如,因为香蕉太多了,也不能拨开人工的一个一个的看它的好坏(我爱吃啊,想想就心疼),此时我们就需要有一种方法,代替拨开香蕉这种粗鲁的手段。这时我们需要通过一些测试,看看哪种方法能更加准确的预测。我们可以通过
“准”:预测的准确度,就是我预测的结果中真正好的香蕉要越多越好;
“全”:就是所有的好的香蕉预测出来的越多越好,虽然把有些坏的也预测是好的了,那也不管,“全”就行。
其实这两者都想要达到就好了,但是不行的:
比如"准",我就预测一个算了,好的香蕉肯定比坏的比例高,也就是我只预测一个,100%比例几率最大了,这时就不“全”了,海域好多好的不能都当成坏的扔了吧。。
再比如"全",我去全部预测成好的这真正好的都在我的预测里,也就是100%。可是这时的"准"就贼不准了。。
所以就必须来平衡这俩同志的关系了,怎么平衡呢?肯定是通过权重来的呀,此时,F值登上历史舞台!
啥意思捏?
实例化讲解吧。比如我们的香蕉中 1 表示好的,0表示坏的,有10个香蕉:
gold : [ 1,1,1,1,1,0,0,0,0,0 ]
pred: [ 1,0,1,1,1,1,1,0,0,0 ]
注释:gold是现实的好坏;pred是预测的好坏。
P(Precision) 查准率:就是上面说的"准"。字面意思好理解呀,就是在预测当中查找准确个数的比例。公式为:
P = 真正预测准确的数量 / 预测是准确的数量 = 4 / 6
R(Recall) 查全率:就是上面的"全"。根据字面理解,在预测中看看真正预测对的占全有对的比率。公式为:
R = 真正预测准确的数量 / 所有真正好的数量 = 4 / 5
F值是:
F(k) = ( 1 + k ) * P * R / ( ( k*k ) * P + R )
注释:k>0 度量了 查全率 对 查准率 的相对重要性。k>1查全率有更大影响;k<1查准率有更大影响。
在这个实例中可以表示为:k>1就是查全率有更大影响,就是好的香蕉最好都预测出来,因为你觉得不想把好的当成坏的扔点( 真可惜,我爱吃啊 ) ;k<1查准率有更大影响,就是一定要准确,省时间,省力更重要,不在乎好的香蕉当坏的扔点。
而我们常用的是F1,就是F(1)的意思,k=1,比如我们做一个分类任务,这几个类觉得都一样重要。此时:
F(1) = 2 * P * R / ( P + R )
代码实现:
背景:用evalList的长度是我需要求的P,R,F1的个数,比如我的实验是立场检测,分类为FAVOR(支持),AGAINST(反对),NONE(中立)。而NONE一般不考虑,只要求得FAVOR,AGAINST各自的P,R,F1,然后F1求个平均即可。比如这个论文的数据:
这时我的evalList里有两个数据分别表示FAVOR,AGAINST各自的P,R,F1值。
这个P,R,F1的代码为:
就这样吧。应该讲的很详细了!
作者:zenRRan
链接:https://www.jianshu.com/p/6536d584d5fd
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
详谈P(查准率),R(查全率),F1值的更多相关文章
- 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...
- 机器学习性能度量指标:ROC曲线、查准率、查全率、F1
错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...
- 【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解
文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错 ...
- 吴恩达机器学习笔记40-用调和平均数F来进行查准率和查全率之间的权衡(Trading Off Precision and Recall by F sore)
在很多应用中,我们希望能够保证查准率和查全率的相对平衡. 我们可以将不同阀值情况下,查全率与查准率的关系绘制成图表,曲线的形状根据数据的不同而不同: 我们希望有一个帮助我们选择这个阀值的方法.一种方法 ...
- 精确率、准确率、召回率和F1值
当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 ...
- 机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC--周振洋
机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标 ...
- 机器学习笔记--classification_report&精确度/召回率/F1值
https://blog.csdn.net/akadiao/article/details/78788864 准确率=正确数/预测正确数=P 召回率=正确数/真实正确数=R F1 F1值是精确度和召回 ...
- BERT模型在多类别文本分类时的precision, recall, f1值的计算
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...
- D. Powerful array 离线+莫队算法 给定n个数,m次查询;每次查询[l,r]的权值; 权值计算方法:区间某个数x的个数cnt,那么贡献为cnt*cnt*x; 所有贡献和即为该区间的值;
D. Powerful array time limit per test seconds memory limit per test megabytes input standard input o ...
随机推荐
- 数据库优先生成EF CRUD演示
①准备我们的数据库: Northwind ②新建 实体数据模型,由数据库优先创建 ③创建控制器,这里我们只针对了Customers这张表做演示,实际会复杂的多 注:你可以把上面两步合成一步来写,创建控 ...
- JavaScript:改变 HTML 样式
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- Angularjs 数据过滤
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- Extjs treePanel 加载等待框
beforeload : { fn : function (store, operation, eOpts){ loadMask = new Ext.LoadMask(Ext.get(this.get ...
- jQuery中没有innerHtml和innerText
发现如果我在div或者其他非表单的标签中赋值,原本用普通的js就直接document.getElementById("id").innerHtml(或者其他几个)就可以了. 但是在 ...
- 9.Element-ui的校验规则Rules
Element-ui的校验规则Rules <el-form label-position="left" label-width="80px" :model ...
- linux各种抓包情况说明
大家都知道抓包指令:tcpdump 抓包的主要目的是测试端口.网络协议通不通,以及对抓取的数据包进行分析.测试,抓包对熟悉linux的大神都不陌生,网络对于我来说也是一窍不通,只是在这里记录一下 ...
- angularjs1+requirejs+ bootstrap+ jQuery低版本配合兼容ie8+浏览器
angularjs兼容低版本IE浏览器(IE8)angularjs在1.3之后的版本都是选择放弃对IE8及更低IE版本的支持,但是就目前的开发形式来看,IE8的使用客户还是蛮多的,最近有个项目要求尽量 ...
- IDEA中解决Edit Configurations中没有tomcat Server选项的问题(附配置Tomcat)
1.点击File-->settings(Ctrl+Alt+S) 2.在弹出的窗口中的搜索框中输入appliation,然后选择下方的Plugins,再然后勾选左侧Installed中的如图所示的 ...
- phpredis命令
<?php //redis //检查一个扩展是否已经加载.大小写不敏感. if (!function_exists('redis')) { echo '不支持 redis'; return ; ...