Problem Description
  Bob gets tired of playing games, leaves Alice, and travels to Changsha alone. Yuelu Mountain, Orange Island, Window of the World, the Provincial Museum etc...are scenic spots Bob wants to visit. However, his time is very limited, he can’t visit them all. 
  Assuming that there are N scenic spots in Changsha, Bob defines a satisfaction value Si to each spot. If he visits this spot, his total satisfaction value will plus Si. Bob hopes that within the limited time T, he can start at spot S, visit some spots selectively, and finally stop at spot E, so that the total satisfaction value can be as large as possible. It's obvious that visiting the spot will also cost some time, suppose that it takes Ci units of time to visit spot i ( 0 <= i < N ).
  Always remember, Bob can choose to pass by a spot without visiting it (including S and E), maybe he just want to walk shorter distance for saving time. 
  Bob also has a special need which is that he will only visit the spot whose satisfaction value is strictly larger than that of which he visited last time. For example, if he has visited a spot whose satisfaction value is 50, he would only visit spot whose satisfaction value is 51 or more then. The paths between the spots are bi-directional, of course.
 
Input
  The first line is an integer W, which is the number of testing cases, and the W sets of data are following.
  The first line of each test data contains five integers: N M T S E. N represents the number of spots, 1 < N < 100; M represents the number of paths, 0 < M < 1000; T represents the time limitation, 0 < T <= 300; S means the spot Bob starts from. E indicates the end spot. (0 <= S, E < N)
  The second line of the test data contains N integers Ci ( 0 <= Ci <= T ), which means the cost of time if Bob visits the spot i.
  The third line also has N integers, which means the satisfaction value Si that can be obtained by visiting the spot i ( 0 <= Si < 100 ).
  The next M lines, each line contains three integers u v L, means there is a bi-directional path between spot u and v and it takes L units of time to walk from u to v or from v to u. (0 <= u, v < N, 0 <= L <= T)
 
Output
  Output case number in the first line (formatted as the sample output).
  The second line contains an integer, which is the greatest satisfaction value.
If Bob can’t reach spot E in T units of time, you should output just a “0” (without quotation marks).
 
题目大意:有n个点m条无向边,每个点有一个权值和一个花费,每条边有一个花费。现在要从S走到E,允许的最大花费为T。经过一个点的时候可以获得它的权值,但同时也要经受那个点的花费,但每次获得的点权要比上一次或者的点券要大。每个点每条边都可以重复走。问从S走到E能获得的最大点权是多少。
思路:搜素超时无误>_<,正解为DP。先作一次floyd求出每个点之间的距离(因为要用到的点点间距太多了floyd正合适,虽说边少可以用SPFA很快,不过n只有100随便啦),然后重新建一个图,从点权小的点 i 到点权大的点 j 之间连一条边,花费为从 i 到 j 的最短路径。得到的图是一个DAG可以用来做DP。DP[i][j]表示到达第i个点并参观,总花费为j,能获得的最大点权,按拓扑结构的顺序来做DP即可。答案为max{DP[i][j - mat[i][E]]}(可以认为我们呆在一个点不动直到做下一个动作,也就是呆着直到要不够时间到终点了)
PS:有重边要注意(原来不说就是有重边啊……)
PS2:记得输出那个Case啊我就忘了……
PS3:细节看代码,要注意不能到达终点的情况和能到终点权值却为0的情况。
PS4:为了方便做DP我加入了一个附加源点←_←
PS5:同一份题有两条最短路+DP大丈夫?虽说用的最短路和DP都不一样……
 
代码(843MS):
 #include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
typedef long long LL; const int MAXN = ;
const int MAXE = MAXN * MAXN; int n, m, st, ed, T;
int val[MAXN], vis_c[MAXN];
int mat[MAXN][MAXN]; inline void update_min(int &a, const int &b) {
if(a > b) a = b;
} inline void update_max(int &a, const int &b) {
if(a < b) a = b;
} struct Solve {
int head[MAXN], indeg[MAXN];
int to[MAXE], next[MAXE], cost[MAXE];
int ecnt; void init() {
memset(head, , sizeof(head));
memset(indeg, , sizeof(indeg));
ecnt = ;
} void add_edge(int u, int v, int c) {
++indeg[v];
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
} int dp[MAXN][MAXN * ]; int solve() {
memset(dp, -, sizeof(dp));
dp[n][] = ;
queue<int> que; que.push(n);
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i <= T; ++i) update_max(dp[u][i], dp[u][i - ]);
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
for(int i = ; i <= T - cost[p]; ++i) {
if(dp[u][i] == -) continue;
update_max(dp[v][i + cost[p]], dp[u][i] + val[v]);
}
if(--indeg[v] == ) que.push(v);
}
}
int ans = ;
mat[n][ed] = mat[st][ed];
for(int i = ; i <= n; ++i) if(T - mat[i][ed] >= )
update_max(ans, dp[i][T - mat[i][ed]]);
//printdp();
return ans;
} void printdp() {
for(int i = ; i < n; ++i) {
for(int j = ; j <= T; ++j) printf("%d ", dp[i][j]);
printf("\n");
}
} } G; struct Original {
void read() {
memset(mat, 0x3f, sizeof(mat));
for(int i = ; i < n; ++i) mat[i][i] = ;
int u, v, c;
for(int i = ; i < m; ++i) {
scanf("%d%d%d", &u, &v, &c);
update_min(mat[u][v], c);
update_min(mat[v][u], c);
}
} void floyd() {
for(int k = ; k < n; ++k)
for(int i = ; i < n; ++i)
for(int j = ; j < n; ++j) update_min(mat[i][j], mat[i][k] + mat[k][j]);
} bool make_G() {
floyd();
if(mat[st][ed] > T) return false;
G.init();
for(int i = ; i < n; ++i)
for(int j = ; j < n; ++j)
if(val[i] < val[j]) G.add_edge(i, j, mat[i][j] + vis_c[j]);
for(int i = ; i < n; ++i)
G.add_edge(n, i, mat[st][i] + vis_c[i]);
return true;
}
} O; int main() {
int W;
scanf("%d", &W);
for(int w = ; w <= W; ++w) {
scanf("%d%d%d%d%d", &n, &m, &T, &st, &ed);
for(int i = ; i < n; ++i) scanf("%d", &vis_c[i]);
for(int i = ; i < n; ++i) scanf("%d", &val[i]);
O.read();
O.make_G();
printf("Case #%d:\n%d\n", w, G.solve());
}
}

HDU 4571 Travel in time(最短路径+DP)(2013 ACM-ICPC长沙赛区全国邀请赛)的更多相关文章

  1. HDU 4568 Hunter(最短路径+DP)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description One day, a hunter named James went to a mysterious area to find the treasures. J ...

  2. HDU 4571 Travel in time ★(2013 ACM/ICPC长沙邀请赛)

    [题意]给定N个点,每个点有一个停留所需的时间Ci,和停留能够获得的满意度Si,有M条边,每条边代表着两个点走动所需的时间ti,现在问在规定的T时间内从指定的一点S到E能够获得的最大的满意度是多少?要 ...

  3. HDU 4573 Throw the Stones(动态三维凸包)(2013 ACM-ICPC长沙赛区全国邀请赛)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4573 Problem Description Remember our childhood? A fe ...

  4. HDU 4569 Special equations(枚举+数论)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known int ...

  5. HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...

  6. 2013 ACM/ICPC 长沙网络赛J题

    题意:一个数列,给出这个数列中的某些位置的数,给出所有相邻的三个数字的和,数列头和尾处给出相邻两个数字的和.有若干次询问,每次问某一位置的数字的最大值. 分析:设数列为a1-an.首先通过相邻三个数字 ...

  7. 2013 ACM-ICPC长沙赛区全国邀请赛——Bottles Arrangement

    这题当时竟然没看啊…… 找规律:求和m+m+m-1+m-1+……前n项 ;}

  8. 2013 ACM-ICPC长沙赛区全国邀请赛—Special equations

    ……但是没仔细看,直接跳过了 这题直接枚举就可以过了 ;}

  9. 2013 ACM-ICPC长沙赛区全国邀请赛——A So Easy!

    这题在比赛的时候不知道怎么做,后来看了别人的解题报告,才知道公式sn=(a+sqrt(b))^n+(a-sqrt(b))^n; 具体推导 #include<iostream> #inclu ...

随机推荐

  1. VSTO Project 客户端自动发送邮件

    利用office vsto功能,抓取我们选择的任务,根据配置节,邮件发送内容,最终根据任务名称,任务开始结束时间,任务资源名称,发送邮件给任务资源. 这是我的VSTO界面. 配置我们发送邮件的服务器地 ...

  2. linux ccenteros 部署 redis

    step one :  yum install redis    -- 安装redis数据库 step two:安装完成之后开启redis 服务 service redis start   syste ...

  3. Mysql jar包

    密码cngb https://pan.baidu.com/share/init?surl=bSGA6T-LTwjx-qaNAiipCA

  4. JS中遍历数组、对象的方式

    1.标准的for循环遍历数组 //不打印自定义属性和继承属性 var array = [1,2,3]; for (var i = 0; i < array.length; i++) { cons ...

  5. Python基础—02-数据类型

    数据类型 存储单位 最小单位是bit,表示二进制的0或1,一般写作b 最小的存储单位是字节,用byte表示,1B = 8b 1024B = 1KB 1024KB = 1MB 1024MB = 1GB ...

  6. 开发一个c#的数据库连接池

    c#操作数据库是一个经典,用习惯了以后真感觉不错,很简单的.现在很多关系数据库都支持c#.c#的ADO.NET规范都遵守. 对于一般的设置,ADO.NET都放在数据库连接字符串上.比如池化,连接超时等 ...

  7. django-基于中间件实现限制ip频繁访问

    ########django-基于中间件写一个限制频繁登陆######## 额额,标题已经很醒目了,通过中间件去实现,其他方法也可以实现 浏览器前端传来的请求,必须通过中间件,才能到后面路由,视图函数 ...

  8. socket手写一个简单的web服务端

    直接进入正题吧,下面的代码都是我在pycharm中写好,再粘贴上来的 import socket server = socket.socket() server.bind(('127.0.0.1', ...

  9. Qt基于model/view数据库编程3

    QSqlQueryModel和QSqlQuery类: 工程开发过程中将这两个类合起来使用,用QSqlQueryModel查询展示数据库中的数据,用QSqlQuery类执行sql语言,实现对数据库的操作 ...

  10. Delphi 版FindWindow 和 FindWindowEx 的语法和用法

    FindWindow(lpClassName,        {窗口的类名}lpWindowName: PChar {窗口的标题}): HWND;              {返回窗口的句柄; 失败返 ...