【算法】fhqtreap初探
NOIP回来就一直想着学平衡树。。。平衡树写久了调不出来真的会头脑发热.jpg
大概只写了几道题。。。
fhqtreap是不需要旋转的平衡树,仅使用分裂合并,一样可以保持平衡树的性质,并且可以非常简单地处理区间问题。
fhqtreap的核心有两段代码,split(分裂)和merge(合并)
split(x, l, r, k),表示把原x的子树以第k小数为界限,权值<=第k小数的数分在左子树,根为l,其他的分在右子树,根为r
void split(int x, int &l, int &r, int k)
{
if(!k) l=, r=x;
else if(k==tree[x].size) l=x, r=;
else if(k<=tree[lt].size) down(r=x), split(lt, l, lt, k), up(x);
else down(l=x), split(rt, rt, r, k-tree[lt].size-), up(x);
}
merge(x, l, r),表示把根为l的子树和根为r的子树合并成一棵根为x的子树
void merge(int &x, int l, int r)
{
if(!l || !r) x=l+r;
else if(tree[l].rnd<tree[r].rnd) down(x=l), merge(tree[x].rs, tree[x].rs, r), up(x);
else down(x=r), merge(tree[x].ls, l, tree[x].ls), up(x);
}
fhqtreap能实现哪些操作呢?
单点/区间插入,单点/区间删除,区间加,区间查询和,区间查询最值,区间反转,区间旋(xun)转(jun)(其实就是这个区间整体后移k步,超过区间的补到前面),还有等等...splay和线段树能做的大部分都能够做到...并且常数比splay小的多...其实写的丑的话被splay吊打,而且要写的优美可能每个操作都得单独写一个子程序...
查询一个区间[l, r]就把一棵树split成三棵树,查中间那棵,再把它们merge回去
核心代码:
inline void add(int l, int r, int delta)//任意操作
{
int x, y, z;
split(root, x, y, r); split(x, z, x, l-);//拆成z,x,y三棵
addone(x, delta);//任意操作
merge(x, z, x); merge(root, x, y);//并回去
}
随机数可以用rand()<<15|rand()来求
初始最好tree[0].rnd=tree[0].sum=tree[0].xxx=...=inf,否则up的时候可能求min会GG,同理求max要赋值-inf
例题时间~
例1 bzoj 3224 tyvj 1729
经典题。。。需要多运用一个rank查询x数的排名,才能进行split(否则得另写一个按数字分的split,相比起来这样更好写)
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define lt tree[x].ls
#define rt tree[x].rs
using namespace std;
const int maxn=, inf=1e9+;
int n, m, x, y, z, root, tott, tmp, opt;
struct treap{int rnd, sum, size, ls, rs;} tree[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void build(int &x, int delta)
{
tree[x=++tott].rnd=rand()<<|rand();
tree[x].sum=delta;
tree[x].size=;
}
inline void up(int x) {if(!x) return; tree[x].size=tree[lt].size+tree[rt].size+;}
void merge(int &x, int l, int r)
{
if(!l || !r) x=l+r;
else if(tree[l].rnd<tree[r].rnd) x=l, merge(tree[x].rs, tree[x].rs, r), up(x);
else x=r, merge(tree[x].ls, l, tree[x].ls), up(x);
}
void split(int x, int &l, int &r, int k)
{
if(!k) l=, r=x;
else if(k==tree[x].size) l=x, r=;
else if(k<=tree[lt].size) r=x, split(lt, l, lt, k), up(x);
else l=x, split(rt, rt, r, k-tree[lt].size-), up(x);
}
int rank(int x, int w)
{
if(!x) return ;
if(tree[x].sum>=w) return rank(lt, w);
return rank(rt, w)+tree[lt].size+;
}
inline void insert(int delta)
{
int x, y, rk=rank(root, delta);
split(root, x, y, rk);
build(tmp, delta);
merge(x, x, tmp); merge(root, x, y);
}
inline void del(int delta)
{
int x, y, z, rk=rank(root, delta)+;
split(root, x, y, rk); split(x, x, z, rk-);
merge(root, x, y);
}
inline int find(int delta)
{
int x, y, z, ans;
split(root, x, y, delta); split(x, z, x, delta-);
ans=tree[x].sum;
merge(x, z, x); merge(root, x, y);
return ans;
}
inline int pre(int delta)
{
int x, y, z, ans, rk=rank(root, delta);
split(root, x, y, rk); split(x, z, x, rk-);
ans=tree[x].sum;
merge(x, z, x); merge(root, x, y);
return ans;
}
inline int succ(int delta)
{
int x, y, z, ans, rk=rank(root, delta+);
split(root, x, y, rk+); split(x, z, x, rk);
ans=tree[x].sum;
merge(x, z, x); merge(root, x, y);
return ans;
}
int main()
{
srand(); read(n); tree[].rnd=tree[].sum=inf;
for(int i=;i<=n;i++)
{
read(opt); read(x);
if(opt==) insert(x);
else if(opt==) del(x);
else if(opt==) printf("%d\n", rank(root, x)+);
else if(opt==) printf("%d\n", find(x));
else if(opt==) printf("%d\n", pre(x));
else printf("%d\n", succ(x));
}
}
例2 poj 3580
整合了大部分操作。。区间加,区间反转,区间旋(xun)转(jun),单点插入,单点删除,区间查询最小值
区间反转打标记就好了,down的时候交换左右子树,给左右子树打上标记即可,打标记的方式是^=1
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define lt tree[x].ls
#define rt tree[x].rs
using namespace std;
const int maxn=, inf=1e9+;
int n, m, x, y, z, root, tott, tmp;
struct treap{int rnd, mn, sum, delta, rev, size, ls, rs;} tree[maxn];
char s[];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int min(int a, int b){return a<b?a:b;}
inline void addone(int x, int delta) {if(!x) return; tree[x].sum+=delta; tree[x].delta+=delta; tree[x].mn+=delta;}
inline void reverseone(int x) {tree[x].rev^=; swap(lt, rt);}
inline void build(int &x, int delta) {tree[x=++tott].rnd=rand()<<|rand(); tree[x].sum=tree[x].mn=delta; tree[x].size=;}
inline void up(int x)
{
if(!x) return;
tree[x].mn=min(tree[x].sum, min(tree[lt].mn, tree[rt].mn));
tree[x].size=tree[lt].size+tree[rt].size+;
}
inline void down(int x)
{
if(!x) return;
if(tree[x].delta) addone(lt, tree[x].delta), addone(rt, tree[x].delta);
if(tree[x].rev) reverseone(lt), reverseone(rt);
tree[x].delta=tree[x].rev=;
}
void merge(int &x, int l, int r)
{
if(!l || !r) x=l+r;
else if(tree[l].rnd<tree[r].rnd) down(x=l), merge(tree[x].rs, tree[x].rs, r), up(x);
else down(x=r), merge(tree[x].ls, l, tree[x].ls), up(x);
}
void split(int x, int &l, int &r, int k)
{
if(!k) l=, r=x;
else if(k==tree[x].size) l=x, r=;
else if(k<=tree[lt].size) down(r=x), split(lt, l, lt, k), up(x);
else down(l=x), split(rt, rt, r, k-tree[lt].size-), up(x);
}
inline void insert(int pos, int delta)
{
int x, y;
split(root, x, y, pos);
merge(x, x, delta); merge(root, x, y);
}
inline void del(int pos)
{
int x, y, z;
split(root, x, y, pos); split(x, x, z, pos-);
merge(root, x, y);
}
inline void add(int l, int r, int delta)
{
int x, y, z;
split(root, x, y, r); split(x, z, x, l-);
addone(x, delta);
merge(x, z, x); merge(root, x, y);
}
inline void reverse(int l, int r)
{
int x, y, z;
split(root, x, y, r); split(x, z, x, l-);
reverseone(x);
merge(x, z, x); merge(root, x, y);
}
inline void revolve(int l, int r, int delta)
{
int x, y, z, h;
split(root, x, y, r-delta); split(x, z, x, l-); split(y, y, h, delta);
merge(x, y, x); merge(x, z, x); merge(root, x, h);
}
inline int query(int l, int r)
{
int x, y, z, ans;
split(root, x, y, r); split(x, z, x, l-);
ans=tree[x].mn;
merge(x, z, x); merge(root, x, y);
return ans;
}
int main()
{
srand(); read(n); tree[].rnd=tree[].mn=tree[].sum=inf;
for(int i=;i<=n;i++) read(x), build(tmp, x), merge(root, root, tmp);
read(m);
for(int i=;i<=m;i++)
{
scanf("%s", s+);
if(s[]=='A') read(x), read(y), read(z), add(x, y, z);
else if(s[]=='R' && s[]=='O') read(x), read(y), read(z), revolve(x, y, z%(y-x+));
else if(s[]=='R' && s[]=='E') read(x), read(y), reverse(x, y);
else if(s[]=='D') read(x), del(x);
else if(s[]=='I') read(x), read(y), build(tmp, y), insert(x, tmp);
else read(x), read(y), printf("%d\n", query(x, y));
}
}
例3 bzoj 1251
除了最小值变最大值之外,操作是poj 3580的子集。。。直接搬一下就好。。。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define lt tree[x].ls
#define rt tree[x].rs
using namespace std;
const int maxn=, inf=1e9+;
int n, m, ty, x, y, z, root, tott;
struct treap{int rnd, mx, sum, delta, rev, size, ls, rs;} tree[maxn];
char buf[],*ptr=buf-;
inline int read()
{
char c=*++ptr; int s=,t=;
while(c<||c>) t=-, c=*++ptr;
while(c>=&&c<=) s=s*+c-'', c=*++ptr;
return s*t;
}
inline int max(int a, int b){return a>b?a:b;}
inline void addone(int x, int delta) {tree[x].sum+=delta; tree[x].delta+=delta; tree[x].mx+=delta;}
inline void reverseone(int x) {tree[x].rev^=; swap(lt, rt);}
inline void up(int x)
{
if(!x) return;
tree[x].mx=max(tree[x].sum, max(tree[lt].mx, tree[rt].mx));
tree[x].size=tree[lt].size+tree[rt].size+;
}
inline void down(int x)
{
if(!x) return;
if(tree[x].delta) addone(lt, tree[x].delta), addone(rt, tree[x].delta);
if(tree[x].rev) reverseone(lt), reverseone(rt);
tree[x].delta=tree[x].rev=;
}
void merge(int &x, int l, int r)
{
if(!l || !r) x=l+r;
else if(tree[l].rnd<tree[r].rnd) down(x=l), merge(tree[x].rs, tree[x].rs, r), up(x);
else down(x=r), merge(tree[x].ls, l, tree[x].ls), up(x);
}
void split(int x, int &l, int &r, int k)
{
if(!k) l=, r=x;
else if(k==tree[x].size) l=x, r=;
else if(k<=tree[lt].size) down(r=x), split(lt, l, lt, k), up(x);
else down(l=x), split(rt, rt, r, k-tree[lt].size-), up(x);
}
inline void add(int l, int r, int delta)
{
int x, y, z;
split(root, x, y, r); split(x, z, x, l-);
addone(x, delta);
merge(x, z, x); merge(root, x, y);
}
inline void reverse(int l, int r)
{
int x, y, z;
split(root, x, y, r); split(x, z, x, l-);
reverseone(x);
merge(x, z, x); merge(root, x, y);
}
inline int query(int l, int r)
{
int x, y, z, ans;
split(root, x, y, r); split(x, z, x, l-);
ans=tree[x].mx;
merge(x, z, x); merge(root, x, y);
return ans;
}
int main()
{
fread(buf,,sizeof(buf),stdin); n=read(); m=read(); tree[].rnd=inf; tree[].mx=tree[].sum=-inf;
for(int i=;i<=n;i++) tree[++tott].size=, tree[tott].rnd=rand()<<|rand(), merge(root, root, tott);
for(int i=;i<=m;i++)
{
ty=read(); x=read(); y=read();
if(ty==) z=read(), add(x, y, z);
else if(ty==) reverse(x, y);
else printf("%d\n", query(x, y));
}
}
例4 bzoj 3223
陶冶身心的水题。。。区间反转一个操作而已。。233
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define lt tree[x].ls
#define rt tree[x].rs
using namespace std;
const int maxn=, inf=1e9+;
int n, m, x, y, z, root, tott, tmp;
struct treap{int rnd, sum, rev, size, ls, rs;} tree[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void reverseone(int x) {tree[x].rev^=; swap(lt, rt);}
inline void build(int &x, int delta) {tree[x=++tott].rnd=rand()<<|rand(); tree[x].sum=delta; tree[x].size=;}
inline void up(int x) {if(!x) return; tree[x].size=tree[lt].size+tree[rt].size+;}
inline void down(int x)
{
if(!x) return;
if(tree[x].rev) reverseone(lt), reverseone(rt);
tree[x].rev=;
}
void merge(int &x, int l, int r)
{
if(!l || !r) x=l+r;
else if(tree[l].rnd<tree[r].rnd) down(x=l), merge(tree[x].rs, tree[x].rs, r), up(x);
else down(x=r), merge(tree[x].ls, l, tree[x].ls), up(x);
}
void split(int x, int &l, int &r, int k)
{
if(!k) l=, r=x;
else if(k==tree[x].size) l=x, r=;
else if(k<=tree[lt].size) down(r=x), split(lt, l, lt, k), up(x);
else down(l=x), split(rt, rt, r, k-tree[lt].size-), up(x);
}
inline void reverse(int l, int r)
{
int x, y, z;
split(root, x, y, r); split(x, z, x, l-);
reverseone(x);
merge(x, z, x); merge(root, x, y);
}
void print(int x)
{
if(!x) return; down(x);
print(lt); printf("%d ", tree[x].sum); print(rt);
}
int main()
{
srand(); read(n); read(m); tree[].rnd=tree[].sum=inf;
for(int i=;i<=n;i++) build(tmp, i), merge(root, root, tmp);
for(int i=;i<=m;i++) read(x), read(y), reverse(x, y);
print(root);
}
例5 bzoj 1500
...大boss,头皮发麻过几天再补,需要垃圾回收,线性建树,让我冷静一下...
博主已经咕了(捂脸
【算法】fhqtreap初探的更多相关文章
- 图论基础之Dijkstra算法的初探
图论,顾名思义就是有图有论. 图:由点"Vertex"和边"Edge "组成,且图分为有向图和无向图(本文讨论有向图),之前做毕业设计的 ...
- fhqtreap初探
介绍 fhqtreap为利用分裂和合并来满足平衡树的性质,不需要旋转操作的一种平衡树. 并且利用函数式编程可以极大的简化代码量. (题目是抄唐神的来着) 核心操作 (均为按位置分裂合并) struct ...
- 强连通分量算法·$tarjan$初探
嗯,今天好不容易把鸽了好久的缩点给弄完了--感觉好像--很简单? 算法的目的,其实就是在有向图上,把一个强连通分量缩成一个点--然后我们再对此搞搞事情,\(over\) 哦对,时间复杂度很显然是\(\ ...
- Sequential Minimal Optimization(SMO,序列最小优化算法)初探
什么是SVM SVM是Support Vector Machine(支持向量机)的英文缩写,是上世纪九十年代兴起的一种机器学习算法,在目前神经网络大行其道的情况下依然保持着生命力.有人说现在是神经网络 ...
- 深度强化学习day01初探强化学习
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设 ...
- 洛谷日报 & 原来博客(转载)
震惊,新的功能:可以按Ctrl + F 进行关键字查询. \(update\) on 10.26:把这两个月的日报也加入进去了,并且修复了几个错误. 本文会把小编用过的博客和比较好的博客放在这里. 可 ...
- Luogu Daily & Original Blog (reproduced)
震惊,新的功能:可以按Ctrl + F 进行关键字查询. \(update\) on 10.26:把这两个月的日报也加入进去了,并且修复了几个错误. 本文会把小编用过的博客和比较好的博客放在这里. 可 ...
- 算法初探:Tensorflow及PAI平台的使用
前言 Tensorflow这个词由来已久,但是对它的理解一直就停留在“听过”的层面.之前做过一个无线图片适配问题智能识别的项目,基于Tensorflow实现了GoogLeNet - Inception ...
- Tarjan算法初探(3):求割点与桥以及双连通分量
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...
随机推荐
- DHCP动态主机配置协议
1.DHCP简述 某组织一旦获得了一个地址,它就可以为本组织内的主机与路由器接口逐个分配IP地址.系统管理通常可以手工配置路由器中的IP地址(静态分配).但这项任务目前通常更多是使用动态主机配置协议( ...
- Java的版本历史与特性
一个比较流行的问题是,“Java下一个版本会有什么特性呢?” .这是否是个好问题却有待商榷.在下面的内容里,我总结了至今为止的Java主要发行版中各自引入的新特性,这样做的目的是为了突出各个新特性是在 ...
- Linux 进程(二):进程关系及其守护进程
进程关系 进程组 进程组是一个或多个进程的集合.通常,它们是在同一作业中结合起来的,同一进程组中的各进程接收来自同一终端的各种信号,每个进程组有一个唯一的进程组ID.每个进程组有一个组长进程,该组长进 ...
- Python:itertools模块(转)
原文:http://www.cnblogs.com/cython/articles/2169009.html itertools模块包含很多创建迭代器的函数,可以用各种方式对数据进行循环操作,此模块中 ...
- 前端基础 & 初识CSS
CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素.l 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 每个CS ...
- openssl之EVP系列之7---信息摘要算法结构概述
openssl之EVP系列之7---信息摘要算法结构概述 ---依据openssl doc/crypto/EVP_DigestInit.pod翻译和自己的理解写成 (作者:Dragon ...
- 卸载SQL Server 2008 (R2)
一.卸载SQL Server 2008 (R2) 1.找到控制面板,win8及win7都可以直接点解“开始”按钮找到. (Tip:win10系统的小盆友可以在“开始”菜单下点击“所有应用”,找到win ...
- app开发需求文档怎么写
我们在开发app前都会做需求分析,这个app开发需求文档怎么写呢?一般可以从这几点入手:确定APP方案的目标,APP方案的受众分析,APP开发方案功能设计,APP的操作系统说明方案,APP是是否是原生 ...
- BDC程序步骤
(1)记录屏幕操作: (2)产生相关程序和数据格式文件: (3)调整数据文件: (4)运行BDC产生的程序读取文件导入数据: (5)源代码分析: (6)用BDC 导入单据: 在理解ABAP 开发的sc ...
- jquery datepicker日历控件
地址:http://jqueryui.com/datepicker/ 使用:$( "#datepicker" ).datepicker(); $.datepicker.setDef ...