Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Revised 13th Edition>

Leisure Air has two Boeing 737-400 airplanes, one based in Pittsburgh and the other in Newark. Both airplanes have a coach section with a 132-seat capacity. Each morning the Pittsburgh-based plane flies to Orlando with a stopover in Charlotte, and the Newark-based plane flies to Myrtle Beach, also with a stopover in Charlotte. At the end of the day, both planes return to their home bases. To keep the size of the problem reasonable, we restrict our attention to the Pittsburgh–Charlotte, Charlotte–Orlando, Newark–Charlotte, and Charlotte–Myrtle Beach flight legs for the morning flights. Figure 5.4 illustrates the logistics of the Leisure Air problem situation.For May 5, Leisure Air established fares and developed forecasts of customer demand for each of 16 ODIFs. These data are shown in Table 5.3. determining how many Q and Y class seats to make available are important decisions that Leisure Air must make in order to operate its reservation system.

Using P for Pittsburgh, N for Newark, C for Charlotte, M for Myrtle Beach, and O for Orlando, the decision variables take the following form:

PCQ = number of seats allocated to Pittsburgh–Charlotte Q class
PMQ = number of seats allocated to Pittsburgh–Myrtle Beach Q class
POQ = number of seats allocated to Pittsburgh–Orlando Q class

PCY = number of seats allocated to Pittsburgh–Charlotte Y class
...
NCQ = number of seats allocated to Newark–Charlotte Q class
...
COY = number of seats allocated to Charlotte–Orlando Y class

Lingo 做线性规划 - Revenue Management的更多相关文章

  1. Lingo 做线性规划 - Operation Management Applications

    Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...

  2. Lingo 做线性规划 - Game Thoery

    Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...

  3. Lingo 做线性规划 - Asset allocation and Portfolio models

    Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...

  4. Lingo 做线性规划 - DEA

    Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...

  5. Lingo 做线性规划 - Financial Applications

    Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...

  6. Lingo 做线性规划 - Marketing Applications

    Reference: <An Introduction to Management Science Quantitative Approaches to Decision Making, Rev ...

  7. Lingo求解线性规划案例4——下料问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 造纸厂接到定单,所需卷纸的宽度和长度如表 卷纸的宽度 长度 5 7 9 10000 30000 20000 工 ...

  8. Lingo求解线性规划案例1——生产计划问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 说明: Lingo版本:                            某工厂明年根据合同,每个季度末 ...

  9. Lingo求解线性规划案例3——混料问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/  某糖果厂用原料A.B和C按不向比率混合加工而成甲.乙.丙三种糖果(假设混合加工中不损耗原料).原料A.B.C ...

随机推荐

  1. shellcode流程

    shellcode就是汇编的opcode,一般以子函数形式出现: 取得shellcode的方便方式是: 1.写一个函数如: void __stdcall code(LONG &a, LONG ...

  2. 学习笔记008之Task

    栈 为后进先出 如何实现一个弹出窗体.

  3. html特殊字符转义问题(转!)

    html.javascript.url特殊字符转义在实际编程中都是有用到的,有的人对特殊字符转义的使用不是很清楚,下面就对html,javascript,url特殊字符的转义做一下说明和归纳. htm ...

  4. mysql 统计

    每周: select count(*) as cnt,week(editdate) as weekflg from projects where year(editdate)=2007 group b ...

  5. 【erlang】执行linux命令的两种方法

    os.cmd(Cmd) os模块提供了cmd函数可以执行linux系统shell命令(也可以执行windows命令).返回一个Cmd命令的标准输出字符串结果.例如在linux系统中执行os:cmd(& ...

  6. [php-src]理解Php内核中的函数与INI

    内容均以php-5.6.14为例. 一. 函数结构 内核中定义一个php函数使用 PHP_FUNCTION 宏 包装,扩展也不例外,该宏在 ./main/php.h:343 有着一系列类似以 PHP ...

  7. FreeBSD_11-系统管理——{Part_2-核心}

    一.Managing Services in FreeBSD Service restart will only work if it is set to YES in /etc/rc.conf. T ...

  8. Python缩进

    今天练习代码的时候发现一个问题,练习类,我在notepad++上写的代码运行后,复制到pycharm上运行然后报错,看代码 #---coding:utf-8--- #定义一个Person类然后实例化 ...

  9. JavaScript-遍历数组

    遍历数组:依次访问数组中每个元素 for(var i=0; i<arr.length;i++){ arr[i] //当前数组 } <!DOCTYPE html> <html&g ...

  10. Longest Valid Parentheses 每每一看到自己的这段没通过的辛酸代码

    Longest Valid Parentheses My Submissions Question Solution  Total Accepted: 47520 Total Submissions: ...