Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

正解:DP

解题报告:

  DP题,乍一看我居然不会做,也是醉了。开始想用贪心水过,发现会gi烂。

  详细博客:http://blog.csdn.net/lijiecsu/article/details/7589877

  不详细说了,见代码:

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN = ;
char ch[MAXN];
int l;
int f[MAXN][MAXN],c[MAXN][MAXN]; inline void output(int l,int r){
if(l>r) return ;
if(l==r) {
if(ch[l]=='(' || ch[l]==')') printf("()");
else printf("[]");
}
else{
if(c[l][r]>=) {
output(l,c[l][r]);
output(c[l][r]+,r);
}
else{
if(ch[l]=='(') {
printf("(");
output(l+,r-);
printf(")");
}
else{
printf("[");
output(l+,r-);
printf("]");
}
}
}
} inline void solve(){
scanf("%s",ch);
int len=strlen(ch);
for(int i=;i<len;i++) f[i][i]=;
for(int i=;i<len;i++) for(int j=;j<len;j++) c[i][j]=-;
for(int l=;l<=len-;l++)
for(int i=;i+l<=len-;i++){
int j=i+l;
int minl=f[i][i]+f[i+][j];
c[i][j]=i;
for(int k=i+;k<j;k++){
if(minl>f[i][k]+f[k+][j]) {
minl=f[i][k]+f[k+][j];
c[i][j]=k;
}
}
f[i][j]=minl; if(( ch[i]=='(' && ch[j]==')' ) || ( ch[i]=='[' && ch[j]==']' )) {
if(f[i][j]>f[i+][j-]) {
f[i][j]=f[i+][j-];
c[i][j]=-;
}
}
} output(,len-);
printf("\n");
} int main()
{
solve();
return ;
}

POJ1141 Brackets Sequence的更多相关文章

  1. [原]POJ1141 Brackets Sequence (dp动态规划,递归)

    本文出自:http://blog.csdn.net/svitter 原题:http://poj.org/problem?id=1141 题意:输出添加括号最少,并且使其匹配的串. 题解: dp [ i ...

  2. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

  3. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  4. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

  5. ZOJ1463:Brackets Sequence(间隙DP)

    Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular seque ...

  6. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  7. [poj P1141] Brackets Sequence

    [poj P1141] Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K   Special Judge Description ...

  8. CSUOJ 1271 Brackets Sequence 括号匹配

    Description ]. Output For each test case, print how many places there are, into which you insert a ' ...

  9. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

随机推荐

  1. WWW压缩解压缩

    unity的WWW参考文档:http://game.ceeger.com/Script/WWW/WWW.html 在unity中把资源打包成Assetbundle其实把资源通过 LZMA 压缩成二进制 ...

  2. java 14-2 正则表达式的案例

    1.判断功能 String类的public boolean matches(String regex) 需求: 判断手机号码是否满足要求? 分析: A:键盘录入手机号码 B:定义手机号码的规则 136 ...

  3. SQL 第一范式、第二范式、第三范式、BCNF

    作者 : Dolphin 原文地址: http://blog.csdn.net/qingdujun/article/details/27365979 一.第一范式 1NF 要求:每一个分量必须是不可分 ...

  4. mysql高可用方案总结性说明

    MySQL的各种高可用方案,大多是基于以下几种基础来部署的(也可参考:Mysql优化系列(0)--总结性梳理   该文后面有提到)1)基于主从复制:2)基于Galera协议(PXC):3)基于NDB引 ...

  5. codevs 3008 加工生产调度[贪心]

    3008 加工生产调度  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 某工厂收到了n个产品的订 ...

  6. STL之stack栈

    栈(statck)这种数据结构在计算机中是相当出名的.栈中的数据是先进后出的(First In Last Out, FILO).栈只有一个出口,允许新增元素(只能在栈顶上增加).移出元素(只能移出栈顶 ...

  7. 如何在.net4.0中使用.net4.5的async/await

    推荐文章: http://www.cnblogs.com/hj4444/p/3857771.html http://www.cnblogs.com/dozer/archive/2012/03/06/a ...

  8. Winform调用百度地图接口

    using System; using System.IO; using System.Collections.Generic; using System.ComponentModel; using ...

  9. Github克隆别人的库

    一. 首先在网站上进入别人的库(通过别人提供的链接或者自己在页面上查询),然后在右下方选择SSH,将链接复制下来. 二. 在你的电脑上新建一个与人家库名相同的文件夹,然后在文件夹上右击,在弹出菜单上选 ...

  10. diff: /../Podfile.lock: No such file or directory

    从github上下载源码运行会报错:问题1描述: diff: /../Podfile.lock: No such file or directory diff: /Manifest.lock: No ...