poj 1845 数论综合
题意:求A^B的所有因数的和 mod 9901
sol:一开始毫无思路,因为很多定理都不知道-_-||
1. 整数的唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
2. 约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
熟悉了公式定理就好办了。
首先求出p[i]、k[i]
然后就有
A=p1^n1*p2^n2*......*pk^nk
A^B=(p1^(B*n1))*(p2^(b*n2))*......*(pk^(b*nk))
然后求出S即可。
注意:一开始我用等比数列求和公式求S,还用了pow_mod。其实这样不行。
比如数据59407 1,
59407 mod 9901=1,最终得出的结果成了0
模运算也不是随便用的,还得按公式来= =
Reference:http://blog.csdn.net/lyy289065406/article/details/6648539
#include "iostream"
#include "cstdio"
using namespace std;
#define P 9901
#define LL __int64
LL n[],p[]; //A=**(p[i]^n[i])
LL k,A,B; LL pow_mod(LL p, LL k,int mod) //(p^k)%mod
{
LL ans = ;
while(k) {
if (k & ) ans = ans * p % mod;
p = (LL)p*p % mod;
k >>= ;
}
return ans;
} void divide()
{
k=;
/*常规做法:分解整数A (A为非质数)*/
for(int i=; i*i<=A;) //根号法+递归法
{
if(A%i==)
{
p[k]=i;
n[k]=;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==) //奇偶法
i++;
else
i+=;
}
/*特殊判定:分解整数A (A为质数)*/
if(A!=)
{
p[k]=A;
n[k++]=;
}
k--;
} LL calc(LL p,LL n) //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod
{ //奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
if(n==) //偶数二分式 (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2)
return ;
if(n%) //n为奇数,
return (calc(p,n/)*(+pow_mod(p,n/+,P)))%P;
else //n为偶数
return (calc(p,n/-)*(+pow_mod(p,n/+,P))+pow_mod(p,n/,P))%P;
} int main()
{
//freopen("in.txt","r",stdin);
while (cin>>A>>B)
{
divide();
LL sum=;
for (LL i=;i<=k;i++)
{
LL tm=calc(p[i],B*n[i]);
sum=(sum*tm)%P;
}
cout<<sum<<endl;
}
return ;
}
poj 1845 数论综合的更多相关文章
- poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- 【简●解】POJ 1845 【Sumdiv】
POJ 1845 [Sumdiv] [题目大意] 给定\(A\)和\(B\),求\(A^B\)的所有约数之和,对\(9901\)取模. (对于全部数据,\(0<= A <= B <= ...
- 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分 整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...
- poj 1845 Sumdiv (数论)
题目链接 题意:求 A^B的所有约数之和对9901取模后的结果. 分析: 看了小优的博客写的. 分析来自 http://blog.csdn.net/lyy289065406/article/detai ...
- POJ - 1845 简单数论
求A^B的约数和模MOD 对A质因子分解P1^k1*P2^k2....P^kn A^B既指数对应部分乘以B 对于每个P都有(1+P^1+P^2+...+P^ki)的选择 连乘每一个P的等比数列之和即可 ...
- 【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂
(题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 ...
- POJ 1845 (约数和+二分等比数列求和)
题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
随机推荐
- Android优化——UI检视利器:Hierarchy Viewer
在Android的SDK工具包中,有很多十分有用的工具,可以帮助程序员开发和测试Android应用程序,大大提高其工作效率.其中的一款叫 Hierachy Viewer的可视化调试工具,可以很方便地在 ...
- vuejs常用指令
v-model 表单双向绑定 v-for="文件名 in 向文件添加内容的文件名" 渲染列表(内容) 将中间的in可改写成of v-on:click="name" ...
- 本地ip被劫持,初始化hosts文件,及其作用与说明
# Copyright (c) 1993-2009 Microsoft Corp.## This is a sample HOSTS file used by Microsoft TCP/IP for ...
- mobileTech
A useful tools or tips list for mobile web application developing 这个项目收集移动端开发所需要的一些资源与小技巧 工具类网站 HTML ...
- usb驱动开发8之配置描述符
前面分析了usb的四大描述符之端点描述符,接口描述符(每一个接口对应一个功能,与之配备相应驱动),下面是看配置描述符还是看设备描述符呢??我们知道,设备大于配置,配置大于接口,接口可以有多种设置. 我 ...
- [Elixir008]Nested Module里的动态函数调用方式
有时我们需要动态生成一些模块名,然后调用它里面的函数.但是我们常常碰到的却是明明有那个模块,结果还是raise模块未定义... 我们来看看到底怎么回事? 首先我们定义一个函数 iex(1)> d ...
- mysql实体关系
数据库连接细节架构: 数据库编码: 关系数据库玩的是生活中物与物之间的关系.那么数据库要保存数据,事先就要描述情况数据如何保存.事务之间的关系如何处理等等. 现实生活中物称为实体,如商品,学生,文章, ...
- C语言 简单的队列(数组队列)
//简单的队列 #include<stdio.h> #include<stdlib.h> #define datatype int #define N 10 //定义队列结构体 ...
- gethostbyname 亲测可用
建立Socket链接的时候需要IP地址,但是只有域名怎么办,gethostbyname就是一个将域名转换为IP的函数: #include <netdb.h> struct hostent ...
- Java Concurrency in Practice 读书笔记 第二章
第二章的思维导图(代码迟点补上):