题目描述

LHX教主要来X市指导OI学习工作了。为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字。一旁的Orzer依次摆出“欢迎欢迎欢迎欢迎……”的大字,但是领队突然发现,另一旁穿着“教”和“主”字文化衫的Orzer却不太和谐。

为了简单描述这个不和谐的队列,我们用“j”替代“教”,“z”替代“主”。而一个“j”与“z”组成的序列则可以描述当前的队列。为了让教主看得尽量舒服,你必须调整队列,使得“jz”子串尽量多。每次调整你可以交换任意位置上的两个人,也就是序列中任意位置上的两个字母。而因为教主马上就来了,时间仅够最多作K次调整(当然可以调整不满K次),所以这个问题交给了你。

输入输出格式

输入格式:

输入文件welcome.in的第1行包含2个正整数N与K,表示了序列长度与最多交换次数。

第2行包含了一个长度为N的字符串,字符串仅由字母“j”与字母“z”组成,描述了这个序列。

输出格式:

输出文件welcome.out仅包括一个非负整数,为调整最多K次后最后最多能出现多少个“jz”子串。

输入输出样例

输入样例#1:

5 2
zzzjj
输出样例#1:

2

说明

【样例说明】

第1次交换位置1上的z和位置4上的j,变为jzzzj;

第2次交换位置4上的z和位置5上的j,变为jzzjz。

最后的串有2个“jz”子串。

【数据规模与约定】

对于10%的数据,有N≤10;

对于30%的数据,有K≤10;

对于40%的数据,有N≤50;

对于100%的数据,有N≤500,K≤100。

f[i][j][k]表示决策到第i位字母,j交换了j次,z交换了k次时的“jz”个数。

只有j==k时,答案才有意义。j!=k的情况是中转状态:可以看做是把前面的某几个字符提了出来,等待之后的交换。

原串中s[i]和s[i-1]只有四种可能:“jj”“zz”“jz”“zj”,枚举四种情况决策即可。

warning:f[][][]数组要预先初始化成-INF,以防从不存在的状态转移过来。

因为没有写上面的这步,刚开始70分,然后越改越低直到10分,怒看题解居然是初始化的问题……

人蠢没办法(ORZ)

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int f[mxn][][];
char s[mxn];
int n,K;
int main(){
memset(f,-0x3f,sizeof f);//-INF
int i,j;
scanf("%d%d",&n,&K);
scanf("%s",s+);
f[][][]=f[][][]=;
if(s[]=='z')f[][][]=;//WTF
else f[][][]=;
for(i=;i<=n;i++){
for(j=;j<=K;j++)
for(int k=;k<=K;k++){
f[i][j][k]=f[i-][j][k];
if(s[i-]=='j' && s[i]=='j' && j)
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]+);
if(s[i-]=='j' && s[i]=='z'){
f[i][j][k]=max(f[i][j][k],f[i-][j][k]+);
}
if(s[i-]=='z' && s[i]=='z' && k)
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]+);
if(s[i-]=='z' && s[i]=='j' && j && k){
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]+);
}
}
}
for(i=;i<K;i++)f[n][K][K]=max(f[n][K][K],f[n][i][i]);
printf("%d\n",f[n][K][K]);
return ;
}

洛谷P1136 迎接仪式的更多相关文章

  1. 洛谷 P1136 迎接仪式 解题报告

    P1136 迎接仪式 题目描述 LHX教主要来X市指导OI学习工作了.为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字.一旁的Orzer依次摆出&q ...

  2. 洛谷P1136 迎接仪式 动态规划

    显然,这是一道动归题. 我们发现,每次交换时只可能交换不同的字母(交换同类字母显然是没有意义的).那么每次交换等同于将 111 个 "j""j""j& ...

  3. P1136 迎接仪式

    P1136 迎接仪式 $O(n^{2}k)$:$f[i][k]$表示到第$i$个字符为止,交换$k$次,得到的最多子串数 那么枚举位置$j$,状态可以从$f[j][k-1]+1$转移过来 $O(nk^ ...

  4. luogu P1136 迎接仪式

    luogu P1136 迎接仪式 本题的难点是状态设计, n^2*m 的状态设计转移太过垄杂,emmmm反正我写不出来QAQ 参考了题解 /*相同字符不用调换,一个字符最多被调换一次否则会有等价多方案 ...

  5. P1136 迎接仪式 (动态规划)

    题目描述 LHX教主要来X市指导OI学习工作了.为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字.一旁的Orzer依次摆出“欢迎欢迎欢迎欢迎……”的 ...

  6. P1136 迎接仪式 题解

    题目描述 LHX教主要来X市指导OI学习工作了.为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字.一旁的Orzer依次摆出"欢迎欢迎欢迎欢 ...

  7. 【洛谷P1352】没有上司的舞会

    [洛谷P1352]没有上司的舞会 x舷售 锚」翅θ 但是 拙臃 蓄ⅶ榔 暄条熨卫 翘ヴ馇 表现无愧于雪月工作室的核心管理 爸惚扎掬 颇瓶 芟缆肝 貌痉了 洵┭笫装 嗝◇裴腋 褓劂埭 ...

  8. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

  9. 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)

    To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...

随机推荐

  1. maven总结3

    POM文件 maven版本:apache-maven-3.1.1 1.<modelVersion>4.0.0</modelVersion>  pom模型的版本,对于maven2 ...

  2. PHP mcrypt加密扩展使用总结

    在开发中,很多时候我们在前后端交互中需要对一些敏感数据进行一定的加密.PHP中有提供了mcrypt的这样一个加密扩展实现对数据的加密解密. 一.mcrypt扩展的安装 在低版本的PHP中需要在配置文件 ...

  3. struts2验证框架1

    <!--该属性指定需要Struts 2处理的请求后缀,该属性的默认值是action,即所有匹配*.action的请求都由Struts 2处理.如果用户需要指定多个请求后缀,则多个后缀之间以英文逗 ...

  4. 【转】【MySQL】SQLSTATE详解

    根据 X/Open 和 SQL Access Group SQL CAE 规范 (1992) 所进行的定义,SQLERROR 返回 SQLSTATE 值.SQLSTATE 值是包含五个字符的字符串 . ...

  5. IBatis.Net学习笔记七--日志处理

    IBatis.Net中提供了方便的日志处理,可以输出sql语句等调试信息. 常用的有两种:1.输出到控制台:   <configSections>    <sectionGroup  ...

  6. &10 基本数据结构——指针和对象的实现,有根树的表示

    #1,指针和对象的实现 如果所用的语言或者环境不支持指针和对象,那我们该怎么用数组来将其转化呢?实质上可以将这个问题的本质转化为数组和链表这两种数据结构的转换,准确来说,是将链表表示的数据用数组表示. ...

  7. 从0开始学Java——@override的作用

    早上跟着<jsp&Servlet学习笔记>来学习jsp,在使用eclipse创建了一个servlet类之后,发现自动创建的类和书上相比,doGet方法的前面少了@override, ...

  8. ubuntu16.04安装eclipse

    1.下载jdk , jdk-8u77-linux-x64.tar.gz 2.下载 eclipse, eclipse-jee-mars-2-linux-gtk-x86_64.tar.gz 注:我下载的都 ...

  9. [CareerCup] 8.5 Online Book Reader System 在线读书系统

    8.5 Design the data structures for an online book reader system. 这道题OOB的题让我们设计一个在线读书系统,还是没有任何提示,所以发挥 ...

  10. 【niubi-job——一个分布式的任务调度框架】----框架设计原理以及实现

    引言 niubi-job的框架设计是非常简单实用的一套设计,去掉了很多其它调度框架中,锦上添花但并非必须的组件,例如MQ消息通讯组件(kafka等).它的框架设计核心思想是,让每一个jar包可以相对之 ...