【bzoj1853】 Scoi2010—幸运数字
http://www.lydsy.com/JudgeOnline/problem.php?id=1853 (题目链接)
今天考试考了容斥,结果空知道结论却不会写→_→
题意
求区间中不含6,8两个数字及由6,8组成的数字的倍数的的数有几个。
Solution
容斥原理。
先把所有的幸运数字都蒯到一个数组里,将两两之间可以整除的数只留下一个小的。
接下来如果暴力组合统计答案的话肯定会TLE,因为就算去掉了可以被整除的数以后还是有1000多个幸运数字。我们考虑dfs,x记录当前已经枚举到了第几个数,y记录已经选了几个数,z表示这几个数的最小公倍数。从大往小枚举,然后加个剪枝,这个神奇的剪枝就直接把复杂度大大降低了,其实就是当最小公倍数大于上界r时返回→_→。
为什么会这样呢,我想了下。只有当前位数T比较大的情况下,T位幸运数字才会比较多,而当T比较大的情况下,两个幸运数字的lcm(最小公倍数)就会很大,很有可能超越上界,所以这个剪枝是很有效的。
代码
// bzoj1853
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} int n,m,vis[100010];
LL l,r,ans,a[100010],b[100010]; void pre(int x,LL y) {
if (y>r)return;
if (x>0) a[++m]=y;
pre(x+1,y*10+6);
pre(x+1,y*10+8);
}
LL gcd(LL x,LL y) {
return x%y==0?y:gcd(y,x%y);
}
void dfs(int x,int y,LL z) {
if (x>n) {
if (y&1) ans+=r/z-(l-1)/z;
else if (y) ans-=r/z-(l-1)/z;
return;
}
dfs(x+1,y,z);
LL tmp=z/gcd(a[x],z);
if ((double)a[x]*tmp<=r) dfs(x+1,y+1,a[x]*tmp);
}
int main() {
scanf("%lld%lld",&l,&r);
pre(0,0);
sort(a+1,a+1+m);
memset(vis,0,sizeof(vis));
for (int i=1;i<=m;i++) if (!vis[i]) {
for (int j=i+1;j<=m;j++)
if (a[j]%a[i]==0) vis[j]=1;
b[++n]=a[i];
}
for (int i=1;i<=n;i++) a[n-i+1]=b[i];
dfs(1,0,1);
printf("%lld",ans);
return 0;
}
【bzoj1853】 Scoi2010—幸运数字的更多相关文章
- BZOJ1853 Scoi2010 幸运数字 【枚举+容斥】
BZOJ1853 Scoi2010 幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号 ...
- bzoj1853[Scoi2010]幸运数字 容斥
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 3027 Solved: 1128[Submit][Status ...
- [BZOJ1853][Scoi2010]幸运数字 容斥+搜索剪枝
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 3202 Solved: 1198[Submit][Status ...
- BZOJ1853 [Scoi2010]幸运数字 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1853 题意概括 求一个区间范围内,近似幸运数字的个数. 定义: 幸运数字:仅由6或者8组成的数字. ...
- BZOJ1853 [Scoi2010]幸运数字
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 2019.01.17 bzoj1853: [Scoi2010]幸运数字(容斥+dfs)
传送门 搜索菜题,然而第一次没有注意然后爆longlonglong longlonglong了. 题意:称所有数位由6,86,86,8组成的数为幸运数字,问一个一个区间[l,r][l,r][l,r]中 ...
- bzoj1853: [Scoi2010]幸运数字 dp+容斥原理
在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是 ...
- 并不对劲的bzoj1853:[SCOI2010]幸运数字
传送门-> 据说本题的正确读法是[shìng运数字]. 听上去本题很适合暴力,于是并不对劲的人就去写了.其实这题就是一个很普(有)通(趣)暴力+神奇的优化. 首先,会发现幸运数字很少,那么就先搜 ...
- 【bzoj1853】: [Scoi2010]幸运数字 数论-容斥原理
[bzoj1853]: [Scoi2010]幸运数字 预处理出所有幸运数字然后容斥原理 但是幸运数字是2logn个数的 直接搞会炸 所以把成倍数的处理掉 然后发现还是会T 所以数字要从大到小处理会快很 ...
- 【BZOJ1853/2393】[Scoi2010]幸运数字/Cirno的完美算数教室 DFS+容斥
[BZOJ1853][Scoi2010]幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那 ...
随机推荐
- Unity2D之让土豆人动起来
Unity2D功能 Unity3D最新的4.3版本,其中最大的新功能就是这个2D工具了.我这里简单介绍一下这个2D工具是怎样使用的. 首先,在我们创建项目的时候,面板上面多了一个2d和3d的选择,这两 ...
- 一款免费好用的正则表达式工具:Regex Match Tracer
推荐分享:一款免费好用的正则表达式工具:Regex Match Tracer v2.1.5 free version 下载地址:Regex Match Tracer
- IO流的练习 —— 创建用户注册、登陆案例
把上次用集合做的时候的分析拿出来 需求: 用户登录注册案例 按照如下操作,可以让我们更符合面向对象思想: A:这个案例有哪些类 B:每个类中又有哪些东西 C:类与类之间的关系 分析: A:这个案例有哪 ...
- http协议详解<一>
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://7826443.blog.51cto.com/7816443/1729227 写在 ...
- cotangent Laplacian
几何网格处理经常用到 cotangent laplacian矩阵.前几天把这个功能整合到我的Maya 转 Matlab插件了. 这里发一个利用cotangent laplacian计算特征向量并显示的 ...
- CSS3中的字体rem
rem和em都是相对单位,em相对父元素的font-size来计算,而rem是根据文档根元素(html)的font-size大小来计算的 通常将html的字体大小设为62.5%(等于10px),当然也 ...
- javascript中的队列结构
1.概念 队列和栈结构不同,栈是一种后进先出的结构,而队列是一种先进先出的结构.队列也是一种表结构,不同的是队列只能在队尾插入元素,在队首删除元素,可以将队列想象成一个在超时等待排队付钱的队伍,或者在 ...
- svn使用过程forMac
在Windows环境中,我们一般使用TortoiseSVN来搭建svn环境.在Mac环境下,由于Mac自带了svn的服务器端和客户端功能,所以我们可以在不装任何第三方软件的前提下使用svn功能,不过还 ...
- Xcode7 真机调试步骤以及遇到的问题解决办法
打开Xcode7,打开preference 添加自己的apple ID登陆上去 打开一个自己的想要运行在真机上的项目 插上自己的iPhone真机(真机没必要是最新的系统,没必要升级,我刚开始报错以为是 ...
- Gruntjs: task之文件映射
由于大多数的任务执行文件操作,Grunt提供了一个强大的抽象声明说明任务应该操作哪些文件.这里总结了几种src-dest(源文件-目标文件)文件映射的方式,提供了不同程度的描述和控制操作方式. 1. ...