国密SM4对称算法实现说明(原SMS4无线局域网算法标准)

  SM4分组密码算法,原名SMS4,国家密码管理局于2012年3月21日发布:http://www.oscca.gov.cn/News/201204/News_1228.htm ,但不能下载标准文档。

  SM4为对称算法,密钥长度和分组长度均为128位。按原SMS4的标准描述:加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

  该算法网上的C语言实现如下:

  sm4.h

 /**
* \file sm4.h
*/
#ifndef XYSSL_SM4_H
#define XYSSL_SM4_H #define SM4_ENCRYPT 1
#define SM4_DECRYPT 0 /**
* \brief SM4 context structure
*/
typedef struct
{
int mode; /*!< encrypt/decrypt */
unsigned long sk[]; /*!< SM4 subkeys */
}
sm4_context; #ifdef __cplusplus
extern "C" {
#endif /**
* \brief SM4 key schedule (128-bit, encryption)
*
* \param ctx SM4 context to be initialized
* \param key 16-byte secret key
*/
void sm4_setkey_enc(sm4_context *ctx, unsigned char key[]); /**
* \brief SM4 key schedule (128-bit, decryption)
*
* \param ctx SM4 context to be initialized
* \param key 16-byte secret key
*/
void sm4_setkey_dec(sm4_context *ctx, unsigned char key[]); /**
* \brief SM4-ECB block encryption/decryption
* \param ctx SM4 context
* \param mode SM4_ENCRYPT or SM4_DECRYPT
* \param length length of the input data
* \param input input block
* \param output output block
*/
void sm4_crypt_ecb(sm4_context *ctx,
int mode,
int length,
unsigned char *input,
unsigned char *output); /**
* \brief SM4-CBC buffer encryption/decryption
* \param ctx SM4 context
* \param mode SM4_ENCRYPT or SM4_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*/
void sm4_crypt_cbc(sm4_context *ctx,
int mode,
int length,
unsigned char iv[],
unsigned char *input,
unsigned char *output); #ifdef __cplusplus
}
#endif #endif /* sm4.h */

  sm4.c

 #include "sm4.h"
#include <string.h>
#include <stdio.h> /*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_ULONG_BE
#define GET_ULONG_BE(n,b,i) \
{ \
(n) = ((unsigned long)(b)[(i)] << ) \
| ((unsigned long)(b)[(i)+] << ) \
| ((unsigned long)(b)[(i)+] << ) \
| ((unsigned long)(b)[(i)+]); \
}
#endif #ifndef PUT_ULONG_BE
#define PUT_ULONG_BE(n,b,i) \
{ \
(b)[(i)] = (unsigned char)((n) >> ); \
(b)[(i)+] = (unsigned char)((n) >> ); \
(b)[(i)+] = (unsigned char)((n) >> ); \
(b)[(i)+] = (unsigned char)((n)); \
}
#endif /*
*rotate shift left marco definition
*
*/
#define SHL(x,n) (((x) & 0xFFFFFFFF) << n)
#define ROTL(x,n) (SHL((x),n) | ((x) >> (32 - n))) #define SWAP(a,b) { unsigned long t = a; a = b; b = t; t = 0; } /*
* Expanded SM4 S-boxes
/* Sbox table: 8bits input convert to 8 bits output*/ static const unsigned char SboxTable[][] =
{
{ 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05 },
{ 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99 },
{ 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62 },
{ 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6 },
{ 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8 },
{ 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35 },
{ 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87 },
{ 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e },
{ 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1 },
{ 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3 },
{ 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f },
{ 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51 },
{ 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8 },
{ 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0 },
{ 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84 },
{ 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48 }
}; /* System parameter */
static const unsigned long FK[] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; /* fixed parameter */
static const unsigned long CK[] =
{
0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
}; /*
* private function:
* look up in SboxTable and get the related value.
* args: [in] inch: 0x00~0xFF (8 bits unsigned value).
*/
static unsigned char sm4Sbox(unsigned char inch)
{
unsigned char *pTable = (unsigned char *)SboxTable;
unsigned char retVal = (unsigned char)(pTable[inch]);
return retVal;
} /*
* private F(Lt) function:
* "T algorithm" == "L algorithm" + "t algorithm".
* args: [in] a: a is a 32 bits unsigned value;
* return: c: c is calculated with line algorithm "L" and nonline algorithm "t"
*/
static unsigned long sm4Lt(unsigned long ka)
{
unsigned long bb = ;
unsigned long c = ;
unsigned char a[];
unsigned char b[];
PUT_ULONG_BE(ka, a, )
b[] = sm4Sbox(a[]);
b[] = sm4Sbox(a[]);
b[] = sm4Sbox(a[]);
b[] = sm4Sbox(a[]);
GET_ULONG_BE(bb, b, )
c = bb ^ (ROTL(bb, )) ^ (ROTL(bb, )) ^ (ROTL(bb, )) ^ (ROTL(bb, ));
return c;
} /*
* private F function:
* Calculating and getting encryption/decryption contents.
* args: [in] x0: original contents;
* args: [in] x1: original contents;
* args: [in] x2: original contents;
* args: [in] x3: original contents;
* args: [in] rk: encryption/decryption key;
* return the contents of encryption/decryption contents.
*/
static unsigned long sm4F(unsigned long x0, unsigned long x1, unsigned long x2, unsigned long x3, unsigned long rk)
{
return (x0^sm4Lt(x1^x2^x3^rk));
} /* private function:
* Calculating round encryption key.
* args: [in] a: a is a 32 bits unsigned value;
* return: sk[i]: i{0,1,2,3,...31}.
*/
static unsigned long sm4CalciRK(unsigned long ka)
{
unsigned long bb = ;
unsigned long rk = ;
unsigned char a[];
unsigned char b[];
PUT_ULONG_BE(ka, a, )
b[] = sm4Sbox(a[]);
b[] = sm4Sbox(a[]);
b[] = sm4Sbox(a[]);
b[] = sm4Sbox(a[]);
GET_ULONG_BE(bb, b, )
rk = bb ^ (ROTL(bb, )) ^ (ROTL(bb, ));
return rk;
} static void sm4_setkey(unsigned long SK[], unsigned char key[])
{
unsigned long MK[];
unsigned long k[];
unsigned long i = ; GET_ULONG_BE(MK[], key, );
GET_ULONG_BE(MK[], key, );
GET_ULONG_BE(MK[], key, );
GET_ULONG_BE(MK[], key, );
k[] = MK[] ^ FK[];
k[] = MK[] ^ FK[];
k[] = MK[] ^ FK[];
k[] = MK[] ^ FK[];
for (; i<; i++)
{
k[i + ] = k[i] ^ (sm4CalciRK(k[i + ] ^ k[i + ] ^ k[i + ] ^ CK[i]));
SK[i] = k[i + ];
} } /*
* SM4 standard one round processing
*
*/
static void sm4_one_round(unsigned long sk[],
unsigned char input[],
unsigned char output[])
{
unsigned long i = ;
unsigned long ulbuf[]; memset(ulbuf, , sizeof(ulbuf));
GET_ULONG_BE(ulbuf[], input, )
GET_ULONG_BE(ulbuf[], input, )
GET_ULONG_BE(ulbuf[], input, )
GET_ULONG_BE(ulbuf[], input, )
while (i<)
{
ulbuf[i + ] = sm4F(ulbuf[i], ulbuf[i + ], ulbuf[i + ], ulbuf[i + ], sk[i]);
// #ifdef _DEBUG
// printf("rk(%02d) = 0x%08x, X(%02d) = 0x%08x \n",i,sk[i], i, ulbuf[i+4] );
// #endif
i++;
}
PUT_ULONG_BE(ulbuf[], output, );
PUT_ULONG_BE(ulbuf[], output, );
PUT_ULONG_BE(ulbuf[], output, );
PUT_ULONG_BE(ulbuf[], output, );
} /*
* SM4 key schedule (128-bit, encryption)
*/
void sm4_setkey_enc(sm4_context *ctx, unsigned char key[])
{
ctx->mode = SM4_ENCRYPT;
sm4_setkey(ctx->sk, key);
} /*
* SM4 key schedule (128-bit, decryption)
*/
void sm4_setkey_dec(sm4_context *ctx, unsigned char key[])
{
int i;
ctx->mode = SM4_ENCRYPT;
sm4_setkey(ctx->sk, key);
for (i = ; i < ; i++)
{
SWAP(ctx->sk[i], ctx->sk[ - i]);
}
} /*
* SM4-ECB block encryption/decryption
*/ void sm4_crypt_ecb(sm4_context *ctx,
int mode,
int length,
unsigned char *input,
unsigned char *output)
{
while (length > )
{
sm4_one_round(ctx->sk, input, output);
input += ;
output += ;
length -= ;
} } /*
* SM4-CBC buffer encryption/decryption
*/
void sm4_crypt_cbc(sm4_context *ctx,
int mode,
int length,
unsigned char iv[],
unsigned char *input,
unsigned char *output)
{
int i;
unsigned char temp[]; if (mode == SM4_ENCRYPT)
{
while (length > )
{
for (i = ; i < ; i++)
output[i] = (unsigned char)(input[i] ^ iv[i]); sm4_one_round(ctx->sk, output, output);
memcpy(iv, output, ); input += ;
output += ;
length -= ;
}
}
else /* SM4_DECRYPT */
{
while (length > )
{
memcpy(temp, input, );
sm4_one_round(ctx->sk, input, output); for (i = ; i < ; i++)
output[i] = (unsigned char)(output[i] ^ iv[i]); memcpy(iv, temp, ); input += ;
output += ;
length -= ;
}
}
}

  sm4test.c

/*
* SM4/SMS4 algorithm test programme
*/ #include <string.h>
#include <stdio.h>
#include "sm4.h" int main()
{
unsigned char key[] = { 0xc5, 0x01, 0xcb, 0xe8, 0xa8, 0x49, 0xb3, 0xe7, 0xf6, 0x38, 0xe7, 0xe0, 0x96, 0xe5, 0x60, 0xef };
unsigned char input[] = { 0x87, 0xca, 0xa0, 0x4a, 0x4b, 0xa7, 0x62, 0x92, 0x50, 0xfb, 0xbe, 0x07, 0x5b, 0xd3, 0x00, 0x01 }; unsigned char output[];
sm4_context ctx;
unsigned long i; //encrypt standard testing vector
//数据加密,output为加密后的数据
sm4_setkey_enc(&ctx, key);
sm4_crypt_ecb(&ctx, , , input, output);
for (i = ; i<; i++)
printf("%02x ", output[i]); //输出
printf("\n"); //decrypt testing
//数据解密
sm4_setkey_dec(&ctx, key);
sm4_crypt_ecb(&ctx, , , output, output);
for (i = ; i<; i++)
printf("%02x ", output[i]);
printf("\n");
return ;
}

  

国密SM4对称算法实现说明(原SMS4无线局域网算法标准)的更多相关文章

  1. 一个关于国密SM4的故事

    一个关于国密SM4的故事 我的名字叫SM4,我还有三位兄长,分别是大哥SM1, 二哥SM2, 和三哥SM3.说起我的名字,故事要回到2006年的时候,我出生的时候并不是叫SM4的,而是叫做SMS4.只 ...

  2. [转帖]一个关于国密SM4的故事

    一个关于国密SM4的故事 https://www.cnblogs.com/ouyida3/p/10053862.html SM1 硬件SM2 非对称加密SM3 hash算法SM4 对称加密 一个关于国 ...

  3. 国密SM4分组加密算法实现 (C++)

    原博客 :http://blog.csdn.net/archimekai/article/details/53095993 密码学的一次课程设计,学习了SM4加密算法,目前应用于无线网安全. SM4分 ...

  4. 2017-2018-2 20179204《网络攻防实践》第十三周学习总结 python实现国密算法

    国密商用算法是指国密SM系列算法,包括基于椭圆曲线的非对称公钥密码SM2算法.密码杂凑SM3算法.分组密码SM4算法,还有只以IP核形式提供的非公开算法流程的对称密码SM1算法等. 第1节 SM2非对 ...

  5. Hyperledger Fabric国密改造

    Fabric国密改造是个什么概念?我们来思考以下4个问题: 为什么偏偏是密码算法?(WHY?) 什么是国密算法?(WHAT?) 改造切入点什么?(WHERE?) 如何实现国密支持?(HOW?) 1.为 ...

  6. 部署国密SSL证书,如何兼容国际主流浏览器?

    国密算法在主流操作系统.浏览器等客户端中,还没有实现广泛兼容.因此,在面向开放互联网的产品应用中,国密算法无法得到广泛应用.比如,在SSL证书应用领域,由于国际主流浏览器不信任国密算法,如果服务器部署 ...

  7. SM2国密证书合法性验证

    通常我们遇到过的X509证书都是基于RSA-SHA1算法的,目前国家在大力推行国密算法,未来银行发行的IC卡也都是基于PBOC3.0支持国密算法的,因此我们来学习一下如何验证SM2国密证书的合法性.至 ...

  8. 关于国密算法 SM1,SM2,SM3,SM4 的笔记

    国密即国家密码局认定的国产密码算法.主要有SM1,SM2,SM3,SM4.密钥长度和分组长度均为128位. SM1 为对称加密.其加密强度与AES相当.该算法不公开,调用该算法时,需要通过加密芯片的接 ...

  9. java sm4国密算法加密、解密

      java sm4国密算法加密.解密 CreationTime--2018年7月5日09点20分 Author:Marydon 1.准备工作 所需jar包: bcprov-jdk15on-1.59. ...

随机推荐

  1. 一个糟糕的Erlang练习题

    好吧,用的语法很糟糕...但是至少是做了练习. 题目 %The sequence of triangle numbers is generated by adding the natural numb ...

  2. Intent和Intent Filter Context

    http://www.android-doc.com/reference/android/content/Intent.html An intent is an abstract descriptio ...

  3. if,switch,do,while,for实例

    1.#include <stdio.h>void f1(int i){    if( i < 6 )    {        printf("Failed!\n" ...

  4. iOS exit(0); 直接退出程序

    exit();

  5. ios严格检验身份证号码有效性

    + (BOOL)checkIDCard:(NSString *)sPaperId { //判断位数 && sPaperId.length != ) { return NO; } NSS ...

  6. html5浮动、等高、弹性盒模型

    1px dashed虚线 box-sizing拯救了布局 1.inherit  继承父级 2.content-box(默认)-----这个盒子的边框.内边距 这2个值是不包括在width和height ...

  7. .NET笔试面试题

    .NET 1.const和readonly的区别? 2.静态类和实例区别?什么时候使用? 3.接口和抽象类的区别?什么时候使用? 4.类和结构体的区别?什么时候使用? 5.文件操作 6.序列化 7.O ...

  8. Radius 远程用户拨号认证系统

    RADIUS 锁定 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 . RADIUS:Remote Authentication Dial In User Service,远程用户拨号认证系 ...

  9. C函数tolower,与toupper

    tolower    将大写转换成小写.  非字母字符不做出处理.   这个函数用法有点特殊他是处理字符的,而不是处理字符串的. 所谓的不能处理字符串不是说他不能处理字符串,他处理的时候对字符串必须是 ...

  10. Java中Comparable和Comparator实现对象比较

    1.通过Comparable实现排序 package Comparable; import java.util.Arrays; public class ComparableUser implemen ...