[原创]:http://m.oschina.net/blog/129357

我在原创的基础又从另一位博主处引用了一些内容。

时钟系统是处理器的核心,所以在学习STM32所有外设之前,认真学习时钟系统是必要的,有助于深入理解STM32。 
    下面是从网上找的一个STM32时钟框图,比《STM32中文参考手册》里面的是中途看起来清晰一些: 
    
    
重要的时钟: 
  PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚;

1、HSI:高速内部时钟信号 stm32单片机内带的时钟 (8M频率)     精度较差 
      2、HSE:高速外部时钟信号  精度高 来源(1)HSE外部晶体/陶瓷谐振器(晶振)  (2)HSE用户外部时钟          
      3、LSE:低速外部晶体 32.768kHz 主要提供一个精确的时钟源 一般作为RTC时钟使用

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

  ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。

  ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

  ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。

  ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

  ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

  其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。

  STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。

  另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。

  系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:

  ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。

  ②、通过8分频后送给Cortex的系统定时器时钟。

  ③、直接送给Cortex的空闲运行时钟FCLK。

  ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。

  ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。

  在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。

  需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。

  连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。

  连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。

涉及的寄存器: 
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:  
typedef struct  
{  
vu32 CR;                  //HSI,HSE,CSS,PLL等的使能  
vu32 CFGR;              //PLL等的时钟源选择以及分频系数设定 
vu32 CIR;                // 清除/使能 时钟就绪中断 
vu32 APB2RSTR;      //APB2线上外设复位寄存器 
vu32 APB1RSTR;      //APB1线上外设复位寄存器 
vu32 AHBENR;         //DMA,SDIO等时钟使能 
vu32 APB2ENR;       //APB2线上外设时钟使能 
vu32 APB1ENR;      //APB1线上外设时钟使能 
vu32 BDCR;           //备份域控制寄存器 
vu32 CSR;             
} RCC_TypeDef;

可以对上上面的时钟框图和RCC寄存器来学习,对STM32的时钟系统有个大概的了解,然后对照我们的《STM32不完全手册》的系统时钟配置函数void Stm32_Clock_Init(u8 PLL)一同来学习。

[引用]

时钟输出的使能控制
    在以上的时钟输出中有很多是带使能控制的,如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等。
当需要使用某模块时,必需先使能对应的时钟。需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
   连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、 Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
   连接在APB2(高速外设)上的设备有:GPIO_A-E、USART1、ADC1、ADC2、ADC3、TIM1、TIM8、SPI1、AFIO

使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值   RCC_DeInit;
2、打开外部高速时钟晶振HSE       RCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作      HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟         RCC_HCLKConfig;
5、设置高速AHB时钟     RCC_PCLK2Config;
6、设置低速速AHB时钟   RCC_PCLK1Config;
7、设置PLL              RCC_PLLConfig;
8、打开PLL              RCC_PLLCmd(ENABLE);
9、等待PLL工作          while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟        RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟      RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

void RCC_Configuration(void)

{

RCC_DeInit();

RCC_HSEConfig(RCC_HSE_ON);   //RCC_HSE_ON——HSE晶振打开(ON)

HSEStartUpStatus = RCC_WaitForHSEStartUp();

if(HSEStartUpStatus == SUCCESS)        //SUCCESS:HSE晶振稳定且就绪

{

RCC_HCLKConfig(RCC_SYSCLK_Div1);  //RCC_SYSCLK_Div1——AHB时钟 = 系统时钟

RCC_PCLK2Config(RCC_HCLK_Div1);   //RCC_HCLK_Div1——APB2时钟 = HCLK

RCC_PCLK1Config(RCC_HCLK_Div2);   //RCC_HCLK_Div2——APB1时钟 = HCLK / 2

FLASH_SetLatency(FLASH_Latency_2);    //FLASH_Latency_2  2延时周期

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);       // 预取指缓存使能

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

// PLL的输入时钟 = HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9

RCC_PLLCmd(ENABLE);

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) ;

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

while(RCC_GetSYSCLKSource() != 0x08);        //0x08:PLL作为系统时钟

}

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOC , ENABLE);

//RCC_APB2Periph_GPIOA    GPIOA时钟

//RCC_APB2Periph_GPIOB    GPIOB时钟

//RCC_APB2Periph_GPIOC    GPIOC时钟

//RCC_APB2Periph_GPIOD    GPIOD时钟

}

[转] STM32各种时钟的区别的更多相关文章

  1. STM32系统时钟RCC(基于HAL库)

    基础认识 为什么要有时钟: 时钟就是单片机的心脏,其每跳动一次,整个单片机的电路就会同步动作一次.时钟的速率决定了两次动作的间隔时间.速率越快,单片机在单位时间内所执行的动作将越多.时钟是单片机运行的 ...

  2. 解析stm32的时钟

    STM32 时钟系统  http://blog.chinaunix.net/uid-24219701-id-4081961.html STM32的时钟系统 ***   http://www.cnblo ...

  3. (六)STM32的时钟系统

    在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL (1) HSI是高速内部时钟,RC振荡器,频率为8MHz: (2) HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外 ...

  4. STM32系统时钟

    一.时钟树 STM32有4个时钟源: 1)HSE(高速外部时钟源) 外部晶振作为时钟源,范围为4~16MHz,常取为8MHz 2)HSI(高速内部时钟源) 由内部RC振荡器产生,频率为8MHz,但不稳 ...

  5. STM32系统时钟为什么没有定义呢

    对于使用3.5版本库开发的STM32学习者 有时候不清楚为什么没有时钟定义 那么我们就简单的讲解下吧: 1,函数从启动文件开始运行(汇编文件) 2,若是hd.s 请看151行LDR     R0, = ...

  6. STM32的时钟配置随笔

    以前使用STM32都是使用库函数开发,最近心血来潮想要使用寄存器来试试手感,于是乎便在工作之余研究了一下STM32F4的时钟配置,在此将经历过程写下来作为锻炼,同时也供和我一样的新手参考,如有错误或者 ...

  7. STM32 MCO时钟输出配置实验

    STM32的PA.8引脚具有复用功能——时钟输出(MCO), 该功能能将STM32内部的时钟通过PA.8输出. 操作流程: 1).设置PA.8为复用AF模式. RCC_AHB1PeriphClockC ...

  8. stm32之时钟控制

    本文提到的有以下内容: 时钟系统与总线矩阵 SysTick系统定时器 RTC实时时钟 看门狗定时器 通用定时器 一.时钟系统与总线矩阵 stm32F4的时钟树如下图所示: 在STM32中,有五个时钟源 ...

  9. STM32内部时钟设置-寄存器版

    STM32寄存器版本——内部时钟设置 同时要记得把延时初始化函数设置好 //系统时钟初始化函数 //pll:选择的倍频数,从2开始,最大值为16 //pll:选择的倍频数,这里使用内部时钟,PLL为4 ...

随机推荐

  1. Unity3d学习 相机的跟随

    最近在写关于相机跟随的逻辑,其实最早接触相机跟随是在Unity官网的一个叫Roll-a-ball tutorial上,其中简单的涉及了关于相机如何跟随物体的移动而移动,如下代码: using Unit ...

  2. iOS代码规范(OC和Swift)

    下面说下iOS的代码规范问题,如果大家觉得还不错,可以直接用到项目中,有不同意见 可以在下面讨论下. 相信很多人工作中最烦的就是代码不规范,命名不规范,曾经见过一个VC里有3个按钮被命名为button ...

  3. nginx+iis+redis+Task.MainForm构建分布式架构 之 (redis存储分布式共享的session及共享session运作流程)

    本次要分享的是利用windows+nginx+iis+redis+Task.MainForm组建分布式架构,上一篇分享文章制作是在windows上使用的nginx,一般正式发布的时候是在linux来配 ...

  4. 基于RN开发的一款视频配音APP(开源)

    在如今React.ng.vue三分天下的格局下,不得不让自己加快学习的脚步.虽然经常会陷入各种迷茫,学得越多会发现不会的东西也被无限放大,不过能用新的技术作出一些小项目小Demo还是会给自己些许自信与 ...

  5. [算法]——快速排序(Quick Sort)

    顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...

  6. 浅谈Slick(2)- Slick101:第一个动手尝试的项目

    看完Slick官方网站上关于Slick3.1.1技术文档后决定开始动手建一个项目来尝试一下Slick功能的具体使用方法.我把这个过程中的一些了解和想法记录下来和大家一起分享.首先我用IntelliJ- ...

  7. HTTP API接口安全设计

    HTTP API接口安全设计 API接口调用方式 HTTP + 请求签名机制   HTTP + 参数签名机制 HTTPS + 访问令牌机制 有没有更好的方案? OAuth授权机制 OAuth2.0服务 ...

  8. org.jboss.deployment.DeploymentException: Trying to install an already registered mbean: jboss.jca:service=LocalTxCM,name=egmasDS

    17:34:37,235 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080 17:34:37,281 INFO [ ...

  9. 彻底搞懂Javascript的“==”

    本文转载自:@manxisuo的<通过一张简单的图,让你彻底地.永久地搞懂JS的==运算>. 大家知道,==是JavaScript中比较复杂的一个运算符.它的运算规则奇怪,容让人犯错,从而 ...

  10. 手机web如何实现多平台分享

    话说App一般都带有分享到社交平台的入口,web网页的分享也有很不错的框架,但是随着HTML5的不断发展,手机web页面越来越多的进入到我们的生活中,那如何在我们的手机上完成分享呢?话说各大分享平台都 ...