一致性哈希算法学习及JAVA代码实现分析
1,对于待存储的海量数据,如何将它们分配到各个机器中去?---数据分片与路由
当数据量很大时,通过改善单机硬件资源的纵向扩充方式来存储数据变得越来越不适用,而通过增加机器数目来获得水平横向扩展的方式则越来越流行。因此,就有个问题,如何将这些海量的数据分配到各个机器中?数据分布到各个机器存储之后,又如何进行查找?这里主要记录一致性Hash算法如何将数据分配到各个机器中去。
2,衡量一致性哈希算法好处的四个标准:
①平衡性:平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。②单调性:单调性是指如果已经有一些数据通过哈希分配到了相应的机器上,又有新的机器加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的机器中去,而不会被映射到旧的机器集合中的其他机器上。
这里再解释一下:就是原有的数据要么还是呆在它所在的机器上不动,要么被迁移到新的机器上,而不会迁移到旧的其他机器上。
③分散性:④负载:参考这里
3,一致性哈希的原理:
由于一般的哈希函数返回一个int(32bit)型的hashCode。因此,可以将该哈希函数能够返回的hashCode表示成一个范围为0---(2^32)-1 环。
将机器的标识(如:IP地址)作为哈希函数的Key映射到环上。如:
hash(Node1) =Key1 hash(Node2) = Key2,借用一张图如下:
同样,数据也通过相同的哈希函数映射到环上。这样,按照顺时针方向,数据存放在它所在的顺时针方向上的那个机器上。这就是一致性哈希算法分配数据的方式!
4,JAVA实现一致性哈希算法的代码分析:
❶设计哈希函数
这里采用了MD5算法,主要是用来保证平衡性,即能够将机器均衡地映射到环上。貌似用Jdk中String类的hashCode并不能很好的保证平衡性。
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException; /*
* 实现一致性哈希算法中使用的哈希函数,使用MD5算法来保证一致性哈希的平衡性
*/
public class HashFunction {
private MessageDigest md5 = null; public long hash(String key) {
if (md5 == null) {
try {
md5 = MessageDigest.getInstance("MD5");
} catch (NoSuchAlgorithmException e) {
throw new IllegalStateException("no md5 algrithm found");
}
} md5.reset();
md5.update(key.getBytes());
byte[] bKey = md5.digest();
//具体的哈希函数实现细节--每个字节 & 0xFF 再移位
long result = ((long) (bKey[3] & 0xFF) << 24)
| ((long) (bKey[2] & 0xFF) << 16
| ((long) (bKey[1] & 0xFF) << 8) | (long) (bKey[0] & 0xFF));
return result & 0xffffffffL;
}
}
❷实现一致性哈希算法:
为什么要引入虚拟机器节点?它的作用是什么?
引入虚拟机器节点,其目的就是为了解决数据分配不均衡的问题。因为,在将实际的物理机器映射到环上时,有可能大部分机器都映射到环上的某一个部分(比如左半圆上),而通过引入虚拟机器节点,在进行机器hash映射时,不是映射具体机器,而是映射虚拟机器,并保证虚拟机器对应的物理机器是均衡的---每台实际的机器对应着相等数目的Virtual nodes。如下图:
如何解决集群中添加或者删除机器上需要迁移大量数据的问题?
假设采用传统的哈希取模法,设有K台物理机,H(key)=hash(key) mod K 即可实现数据分片。但当K变化时(如新增一台机器),所有已经映射好的数据都需要重新再映射。H(key)=hash(key) mod (K+1)。
一致性哈希采用的做法如下:引入一个环的概念,如上面的第一个图。先将机器映射到这个环上,再将数据也通过相同的哈希函数映射到这个环上,数据存储在它顺时针走向的那台机器上。以环为中介,实现了数据与机器数目之间的解藕。这样,当机器的数目变化时,只会影响到增加或删除的那台机器所在的环的邻接机器的数据存储,而其他机器上的数据不受影响。(参考这篇文章:https://www.cnblogs.com/hapjin/p/5760463.html)
在具体JAVA实现代码中,定义了一个TreeMap<k, V>用来保存虚拟机器节点到实际的物理机器的映射。机器以字符串形式来标识,故hash函数的参数为String
for (int i = 0; i < numberOfReplicas; i++)
// 对于一个实际机器节点 node, 对应 numberOfReplicas 个虚拟节点
/*
* 不同的虚拟节点(i不同)有不同的hash值,但都对应同一个实际机器node
* 虚拟node一般是均衡分布在环上的,数据存储在顺时针方向的虚拟node上
*/
circle.put(hashFunction.hash(node.toString() + i), node);
而对于 数据的存储而言,逻辑上是按顺时针方向存储在虚拟机器节点中,虚拟机器节点通过TreeMap知道它实际需要将数据存储在哪台物理机器上。此外,TreeMap中的Key是有序的,而环也是顺时针有序的,这样才能当数据被映射到两台虚拟机器之间的弧上时,通过TreeMap的 tailMap()来寻找顺时针方向上的下一台虚拟机。
if (!circle.containsKey(hash)) {//数据映射在两台虚拟机器所在环之间,就需要按顺时针方向寻找机器
SortedMap<Long, T> tailMap = circle.tailMap(hash);
hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
}
完整代码:
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.TreeMap;
import java.util.TreeSet; public class ConsistentHash<T> {
private final HashFunction hashFunction;
private final int numberOfReplicas;// 节点的复制因子,实际节点个数 * numberOfReplicas =
// 虚拟节点个数
private final SortedMap<Long, T> circle = new TreeMap<Long, T>();// 存储虚拟节点的hash值到真实节点的映射 public ConsistentHash(HashFunction hashFunction, int numberOfReplicas,
Collection<T> nodes) {
this.hashFunction = hashFunction;
this.numberOfReplicas = numberOfReplicas;
for (T node : nodes)
add(node);
} public void add(T node) {
for (int i = 0; i < numberOfReplicas; i++)
// 对于一个实际机器节点 node, 对应 numberOfReplicas 个虚拟节点
/*
* 不同的虚拟节点(i不同)有不同的hash值,但都对应同一个实际机器node
* 虚拟node一般是均衡分布在环上的,数据存储在顺时针方向的虚拟node上
*/
circle.put(hashFunction.hash(node.toString() + i), node);
} public void remove(T node) {
for (int i = 0; i < numberOfReplicas; i++)
circle.remove(hashFunction.hash(node.toString() + i));
} /*
* 获得一个最近的顺时针节点,根据给定的key 取Hash
* 然后再取得顺时针方向上最近的一个虚拟节点对应的实际节点
* 再从实际节点中取得 数据
*/
public T get(Object key) {
if (circle.isEmpty())
return null;
long hash = hashFunction.hash((String) key);// node 用String来表示,获得node在哈希环中的hashCode
if (!circle.containsKey(hash)) {//数据映射在两台虚拟机器所在环之间,就需要按顺时针方向寻找机器
SortedMap<Long, T> tailMap = circle.tailMap(hash);
hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
}
return circle.get(hash);
} public long getSize() {
return circle.size();
} /*
* 查看MD5算法生成的hashCode值---表示整个哈希环中各个虚拟节点位置
*/
public void testBalance(){
Set<Long> sets = circle.keySet();//获得TreeMap中所有的Key
SortedSet<Long> sortedSets= new TreeSet<Long>(sets);//将获得的Key集合排序
for(Long hashCode : sortedSets){
System.out.println(hashCode);
} System.out.println("----each location 's distance are follows: ----");
/*
* 查看用MD5算法生成的long hashCode 相邻两个hashCode的差值
*/
Iterator<Long> it = sortedSets.iterator();
Iterator<Long> it2 = sortedSets.iterator();
if(it2.hasNext())
it2.next();
long keyPre, keyAfter;
while(it.hasNext() && it2.hasNext()){
keyPre = it.next();
keyAfter = it2.next();
System.out.println(keyAfter - keyPre);
}
} public static void main(String[] args) {
Set<String> nodes = new HashSet<String>();
nodes.add("A");
nodes.add("B");
nodes.add("C"); ConsistentHash<String> consistentHash = new ConsistentHash<String>(new HashFunction(), 2, nodes);
consistentHash.add("D"); System.out.println("hash circle size: " + consistentHash.getSize());
System.out.println("location of each node are follows: ");
consistentHash.testBalance();
} }
参考资料:
五分钟理解一致性哈希算法(consistent hashing)
一致性hash算法 - consistent hashing
一致性哈希算法学习及JAVA代码实现分析的更多相关文章
- 一致性哈希算法原理及Java实现
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...
- 一致性哈希算法(c#版)
最近在研究"一致性HASH算法"(Consistent Hashing),用于解决memcached集群中当服务器出现增减变动时对散列值的影响.后来 在JAVAEYE上的一篇文章中 ...
- Java_一致性哈希算法与Java实现
摘自:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...
- 一致性哈希算法原理、避免数据热点方法及Java实现
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...
- 一致性哈希算法与Java实现
原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...
- _00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决
笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向: ...
- 一致性哈希算法——算法解决的核心问题是当slot数发生变化时,能够尽量少的移动数据
一致性哈希算法 摘自:http://blog.codinglabs.org/articles/consistent-hashing.html 算法简述 一致性哈希算法(Consistent Hashi ...
- 一致性哈希算法(consistent hashing)(转)
原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing) 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网 ...
- 一致性哈希算法(Consistent Hashing) .
应用场景 这里我先描述一个极其简单的业务场景:用4台Cache服务器缓存所有Object. 那么我将如何把一个Object映射至对应的Cache服务器呢?最简单的方法设置缓存规则:object.has ...
随机推荐
- 关于antlr包删除问题
在建这个网站,用户登录的时候,涉及查询问题,然后就出现了java.lang.NoSuchMethodError: antlr.collections.AST.getLine()I错误,我一脸蒙逼,后来 ...
- SQL索引学习-聚集索引
这篇接着我们的索引学习系列,这次主要来分享一些有关聚集索引的问题.上一篇SQL索引学习-索引结构主要是从一些基础概念上给大家分享了我的理解,没有实例,有朋友就提到了聚集索引的问题,这里列出来一下: 其 ...
- android的Project has no default.properties file! Edit the project properties to set one. 的解决
网上找来这种方法基本解决: 在我们导入Android工程时,有时候会出现如题所述的错误,打开工程目录可以看到,目录下的default.properties文件没有了或者多出了一个project.pro ...
- jQuery淡入淡出效果轮播图
用JavaScript做了平滑切换的焦点轮播图之后,用jQuery写了个简单的淡入淡出的轮播图,代码没有做优化,html结构稍微有一些调整,图片部分用ul替换了之前用的div. html结构如下: & ...
- CSS文本溢出显示省略号
项目中常常有这种需要我们对溢出文本进行"..."显示的操作,单行多行的情况都有(具体几行得看设计师心情了),这篇随笔是我个人对这种情况解决办法的归纳,欢迎各路英雄指教. 单行 语法 ...
- Android破解之Lic文件加密程序(首例)
我不会写Android,这是我第一个破解Android的例子,耗时接近一天,希望大神不要见笑! 本程序为商业软件,不便发布APK程序. 不要给我发消息,我不得回,有问题,直接回帖就可以了. 准备工作 ...
- SQL2012 提示评估已过期 解决方案- sql server问题
SQL2012 提示评估已过期 解决方案提示评估已过期的解决方法和 sql2008一样 第1步:进入SQL2012配置工具中的安装中心第2步:再进入维护界面,选择版本升级第3步:进入产品密钥,输入密钥 ...
- andriod RadioButton
<?xml version="1.0" encoding="UTF-8"?> <LinearLayout android:orientatio ...
- andriod 动态创建控件
Button btNext=(Button)findViewById(R.id.next); btNext.setOnClickListener(new Button.OnClickListener( ...
- HBase读写路径的工作机制
出处:http://wuyudong.com/1946.html HBase 写路径工作机制 在HBase 中无论是增加新行还是修改已有的行,其内部流程都是相同的.HBase 接到命令后存下变化信息, ...