The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)
The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)
Dirichlet分布可以看做是分布之上的分布。如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}。现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,0.1,0.1}。现在,我们还不满足,我们想要做10000次试验,每次试验中我们都投掷骰子10000次。我们想知道,出现这样的情况使得我们认为,骰子六面出现概率为{0.2,0.2,0.2,0.2,0.1,0.1}的概率是多少(说不定下次试验统计得到的概率为{0.1,
0.1, 0.2, 0.2, 0.2, 0.2}这样了)。这样我们就在思考骰子六面出现概率分布这样的分布之上的分布。而这样一个分布就是Dirichlet分布。
首先用上面这一段来点直观印象,然后列一些资料:
维基里面对于狄利克雷分布貌似介绍的挺复杂,不够基础。我找到了一个CMU的PPT:Dirichlet
Distribution, Dirichlet Process and Dirichlet Process Mixture,找到一篇华盛顿大学的《Introduction
to the Dirichlet Distribution and Related Processes》介绍。
发现CMU那个ppt里面讲到,Beta is the conjugate prior of Binomial,有一种原来如此的感觉。嗯,原来贝塔分布是二项分布的共轭先验分布,那么狄利克雷分布就是多项分布的共轭先验分布。所以要看狄利克雷分布,就要先了解多项分布,然后呢,想要了解狄利克雷之于多元的关系,就要先看贝塔分布和伯努利分布的关系。所以,二项分布、beta分布、以及共轭这三点是理解狄利克雷分布的关键基础知识,这个基础知识记录在这里(PRML2.1整小章介绍了这个)。
下面正式进入狄利克雷分布介绍,首先说一下这个多项分布的参数μ。在伯努利分布里,参数μ就是抛硬币取某一面的概率,因为伯努利分布的状态空间只有{0,1}。但是在多项分布里,因为状态空间有K个取值,因此μ变成了向量μ⃗ =(μ1, …, μk)T。多项分布的likelihood函数形式是∏k=1Kμmkk,因此就像选择伯努利分布的共轭先验贝塔函数时那样,狄利克雷分布的函数形式应该如下:
p(μ|α)∝∏k=1Kμαk−1k 式2.37
上式中,∑kμk=1,α⃗ =(α1, …, αk)T是狄利克雷分布的参数。最后把2.37归一化成为真正的狄利克雷分布:
Dir(μ|α)=Γ(α0)Γ(α1)…Γ(αk)∏k=1Kμαk−1k
其中α0=∑k=1Kαk。这个函数跟贝塔分布有点像(取K=2时就是Beta分布)。跟多项分布也有点像。就像Beta分布那样,狄利克雷分布就是它所对应的后验多项分布的参数μ⃗ 的分布,只不过μ是一个向量,下图是当μ⃗ =(μ1,μ2,μ3)时,即只有三个值时狄利克雷概率密度函数的例子。其中中间那个图的三角形表示一个平放的Simplex,三角形三个顶点分别表示μ⃗ =(1,0,0),μ⃗ =(0,1,0)和μ⃗ =(0,0,1),因此三角形中间部分的任意一个点就是μ⃗ 的一个取值,纵轴就是这个μ⃗ 的Simplex上的概率密度值(PDF)。
对于参数μ⃗ 的估计时,可知
后验=似然*先验 的函数形式如下:
Kμαk+mk−1k
从这个形式可以看出,后验也是狄利克雷分布。类似于贝塔分布归一化后验的方法,我们把这个后验归一化一下,得到:
p(μ|D,α)=Dir(μ|α+m)=Γ(α0+N)Γ(α1+m1)…Γ(αK+mK)∏k=1Kμαk+mk−1k
The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)的更多相关文章
- (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3. 4. ...
- [Bayes] Multinomials and Dirichlet distribution
From: https://www.cs.cmu.edu/~scohen/psnlp-lecture6.pdf 不错的PPT,图示很好. 伯努利分布 和 多项式分布 Binomial Distribu ...
- Dirichlet Distribution
Beta分布: 二项式分布(Binomial distribution): 多项式分布: Beta分布: Beta分布是二项式分布的共轭先验(conjugate prior) Dirichlet Di ...
- Notes on the Dirichlet Distribution and Dirichlet Process
Notes on the Dirichlet Distribution and Dirichlet Process In [3]: %matplotlib inline Note: I wrote ...
- 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布
1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...
- 主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)
一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多 ...
- SK-Learn使用NMF(非负矩阵分解)和LDA(隐含狄利克雷分布)进行话题抽取
英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html 这 ...
- 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
随机推荐
- C语言 共用体
//共用体 union #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> #includ ...
- 使用地址栏访问CXF Webservice写法
/* * 通过url调用 * http://localhost:8080/EFP/webService/TestWebservice/testOut/arg0/liuyx */ http://loca ...
- EBS 用户及其联系人的失效时间
联系人失效时间还有一个SQL,从页面的联系人详情简化取得的,不如直接用pos_supplier_users_v视图 SELECT * FROM (SELECT NULL contact_req_id, ...
- MVC4验证用户登录特性实现方法
在开发过程中,需要用户登陆才能访问指定的页面这种功能,微软已经提供了这个特性. // 摘要: // 表示一个特性,该特性用于限制调用方对操作方法的访问. [AttributeUsage(Attribu ...
- 转 Windows server 2008 搭建VPN服务
VPN英文全称是“Virtual Private Network”,就是“虚拟专用网络”. 虚拟专用网络就是一种虚拟出来的企业内部专用线路.这条隧道可以对数据进行几倍加密达到安全使用互联网的目的. ...
- Android开发之高效加载Bitmap
一.概述 在Android开发中,我们经常与Bitmap打交道,而对Bitmap的不恰当的操作经常会导致OOM(Out of Memory).这篇文章我们会介绍如何高效地在Android开发中使用Bi ...
- 【MPI0】学习资料搜集
一个不错的英文的MPI教程:http://mpitutorial.com 中科大的MPI学习资料:http://micro.ustc.edu.cn/Linux/MPI/ 清华大学的并行计算资料:htt ...
- 从零开始写redis客户端(deerlet-redis-client)之路——第一个纠结很久的问题,restore引发的血案
引言 正如之前的一篇博文,LZ最近正在从零开始写一个redis的客户端,主要目的是为了更加深入的了解redis,当然了,LZ也希望deerlet客户端有一天能有一席之地.在写的过程当中,LZ遇到了一个 ...
- Git.Framework 框架随手记--ORM编辑删除
前面一篇文章<Git.Framework 框架随手记--ORM新增操作>主要讲解了如何使用Git.Framework往数据库中添加数据.其操作过程相对简单,本章主要记录如何编辑数据和修改数 ...
- EasyUI之Form load函数IE8下设置Radio或Checkbox的BUG
EasyUI的form的load函数很好用,表单赋值就靠它了,简单方便.我们可以指定url以Ajax加载,如: 1: $('#ff').form('load', 'ajax/common') JSON ...