题意:

  给你一张二分图,给一个原匹配,求原匹配改动最少的边数使其边权和最大。

SOL:

  我觉得我的智商还是去搞搞文化课吧。。这种题给我独立做我大概只能在暴力优化上下功夫。。

  这题的处理方法让我想到了剩余系。。貌似就是它。。

  我们将每条边的边权扩大n+1倍——是不是有点雾,同时将原匹配边的边权再加1.

  非常玄学!这样做有什么道理呢?它保证了最优匹配在这样更改后仍是最优的!我们假设次优解比最优解只小1,在乘上n+1后差距被放大到n+1,即使次优解全由原匹配边组成,加上n仍小于最优解,那么我们就一定能求出最优解。同时我们注意到每一条边的边权均为n+1的倍数,而原匹配边的边权为n+1的倍数加1,那么我们就能很方便地求出当前解中有多少原匹配边。

  如果原图有多个最优解,那么我们能肯定拥有原匹配边最多的解在乘上n+1后边权最大——毕竟人家加了1嘛。

  很巧妙的剩余系转化与运用啊。。数学渣确实已经没救了。

/*==========================================================================
# Last modified: 2016-02-19 13:00
# Filename: hdu2853.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define lowbit(x) (x)&(-x)
#define INF 1070000000
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define maxn 100
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
/*==================split line==================*/
int n,m;
int slack[maxn],lx[maxn],ly[maxn],w[maxn][maxn],link[maxn];
bool S[maxn],T[maxn];
int Ans;
bool match(int i){
S[i]=true;
FORP(j,1,m)
if (!T[j]){
int tmp=lx[i]+ly[j]-w[i][j];
if (tmp==0){
T[j]=true;
if (!link[j] || match(link[j])){
link[j]=i;
return true;
}
}
else slack[j]=min(slack[j],tmp);
}
return false;
}
void updata(){
int a=INF;
FORP(i,1,m) if (!T[i]) a=min(a,slack[i]);
FORP(i,1,n) if (S[i]) lx[i]-=a;
FORP(i,1,m)
if (T[i]) ly[i]+=a;
else slack[i]-=a;
}
void KM(){
memset(lx,0,sizeof(lx));
memset(link,0,sizeof(link));
memset(ly,0,sizeof(ly));
FORP(i,1,n)
FORP(j,1,m) lx[i]=max(lx[i],w[i][j]);
FORP(i,1,n){
memset(slack,0x7f,sizeof(slack));
while (true){
memset(S,false,sizeof(S));
memset(T,false,sizeof(T));
if (match(i)) break;
else updata();
}
}
int ans=0;
FORP(i,1,m) if (link[i]) ans+=w[link[i]][i];
printf("%d %d\n",n-ans%(n+1),ans/(n+1)-Ans/(n+1));
}
int main(){
freopen("a.in","r",stdin);
while (scanf("%d%d",&n,&m)!=EOF){
Ans=0;
FORP(i,1,n)
FORP(j,1,m) {
int x;
scanf("%d",&x);
w[i][j]=x*(n+1);
}
FORP(i,1,n) {int x; scanf("%d",&x); Ans+=w[i][x]; w[i][x]++;}
KM();
}
}

HDU 2853 & 剩余系+KM模板的更多相关文章

  1. HDU 2853 最大匹配&KM模板

    http://acm.hdu.edu.cn/showproblem.php?pid=2853 这道题初看了没有思路,一直想的用网络流如何解决 参考了潘大神牌题解才懂的 最大匹配问题KM 还需要一些技巧 ...

  2. 【HDU 2853】 KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2853 题意:有n个公司,m个任务,每个公司做每个任务都有一个效率值,最开始每个公司都指派了一个任务,现 ...

  3. hdu 2853 Assignment KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2853 Last year a terrible earthquake attacked Sichuan ...

  4. 【HDU 2853】Assignment (KM)

    Assignment Problem Description Last year a terrible earthquake attacked Sichuan province. About 300, ...

  5. HDU 2853 Assignment(KM最大匹配好题)

    HDU 2853 Assignment 题目链接 题意:如今有N个部队和M个任务(M>=N),每一个部队完毕每一个任务有一点的效率,效率越高越好.可是部队已经安排了一定的计划,这时须要我们尽量用 ...

  6. Assignment HDU - 2853(二分图匹配 KM 新边旧边)

    传送门: Assignment HDU - 2853 题意:题意直接那松神的题意了.给了你n个公司和m个任务,然后给你了每个公司处理每个任务的效率.然后他已经给你了每个公司的分配方案,让你求出最多能增 ...

  7. HDU 2853 (KM最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2853 题目大意:二分图匹配费用流.①最大匹配②最小原配变动 解题思路: 如果去掉第二个要求,那么就是裸 ...

  8. HDU 2255 & KM模板

    题意: 一张完备二分图求最优完备匹配. SOL: 这题就不讲什么sol了...毕竟是裸的KM,不会的话可以看老人家的大白鼠,一些问题看代码注释.讲讲经历(悲惨的经历) 刚打完,自信地交上去发现MLE. ...

  9. Assignment (HDU 2853 最大权匹配KM)

    Assignment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. ruby开发过程中的小总结

    (1)建表的时候注意保留字 在新建的表里无法插入一列的值, 报错信息是:Can't mass-assign protected attributes,这一列的列名是type,查了一下发现是因为type ...

  2. ZeroMQ(java)中组件间数据传输(Pipe的实现)

    在ZeroMQ(java)中,整个IO的处理流程都是分层来进行的,当然处于最下端的肯定是前面介绍过的poller以及StreamEngin了....涉及到上层的话就还有session,以及socket ...

  3. HTML前端

    1.<html>内容</html> 解释:HTML文档的文档标记,也成为HTML开始标记 功能:这对标记分别位于网页的最前端和最后端 <html>在最前段表示网页的 ...

  4. postgresql 锁的定位

    今天碰到了一个问题,锁定穷根追底把postgresql的锁研究了一番. 数据库查看锁 可以通过表 pg_locks来查看有哪些锁.sql如下: select a.locktype,a.database ...

  5. linux 下如何查看和踢除正在登陆的其它用户 ==>Linux下用于查看系统当前登录用户信息的4种方法

    在linux系统中用pkill命令踢出在线登录用户 由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍 所以需要有时踢出指定的用户 1/#who   查出当前有那些终端登录(用 ...

  6. TCP的几个状态 (SYN, FIN, ACK, PSH, RST, URG)

    在TCP层,有个FLAGS字段,这个字段有以下几个标识:SYN, FIN, ACK, PSH, RST, URG. 其中,对于我们日常的分析有用的就是前面的五个字段. 它们的含义是: SYN表示建立连 ...

  7. Python发布Django项目的pyc版脚本

    import os import sys from py_compile import compile #print "argvs:",sys.argv if len(sys.ar ...

  8. 【JAVA、C++】LeetCode 006 ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  9. 【JAVA、C++】LeetCode 015 3Sum

    Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all un ...

  10. Tomcat AccessLog 格式化

    有的时候我们要使用日志分析工具对日志进行分析,需要对日志进行格式化,比如,要把accessLog格式化成这样的格式 c-ip s-ip x-InstancePort date time-taken x ...