题目大概说一棵n个结点的树,每个结点都可以安装某一规格的一个塔,塔有价格和能量两个属性。现在一个敌人从1点出发但不知道他会怎么走,如果他经过一个结点的塔那他就会被塔攻击失去塔能量的HP,如果HP小于等于0敌人就挂了。任务就是在总花费不超过m的条件下在各个结点安装塔,求能预防的敌人的HP的最大值。

状态容易表示,dp[u][m]表示在结点u为根的子树中花费m能预防的最大的HP

转移显然又是树上背包了,不过略麻烦,想清楚的话还是能比较快地写完:

  • u子树从它孩子结点的子树的最小值中转移过来,因为各个孩子都必须选我用了一个临时数组存值转移完后更新回去
  • 这样处理完u的各个子树,再用一遍背包加上u结点本身能建的塔,就是dp[u]状态的值了

WA了一发,因为同一价格不同能量没考虑到。。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1111
struct Edge{
int v,next;
}edge[MAXN<<];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
}
int m,mat[MAXN][];
int d[MAXN][],tmp[];
void dp(int u,int fa){
d[u][]=;
bool first=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
dp(v,u);
if(first){
first=;
for(int j=; j<=m; ++j) d[u][j]=d[v][j];
continue;
}
memset(tmp,-,sizeof(tmp));
for(int j=; j<=m; ++j){
for(int k=; j+k<=m; ++k){
tmp[j+k]=max(tmp[j+k],min(d[u][j],d[v][k]));
}
}
for(int j=; j<=m; ++j) d[u][j]=tmp[j];
}
for(int i=m; i>=; --i){
for(int j=; j<=i; ++j){
if(d[u][i-j]==- || mat[u][j]==-) continue;
d[u][i]=max(d[u][i],d[u][i-j]+mat[u][j]);
}
}
}
int main(){
int t,n,a,b,c;
scanf("%d",&t);
while(t--){
NE=;
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=; i<n; ++i){
scanf("%d%d",&a,&b);
addEdge(a,b); addEdge(b,a);
}
memset(mat,-,sizeof(mat));
scanf("%d",&m);
for(int i=; i<=n; ++i){
scanf("%d",&a);
while(a--){
scanf("%d%d",&b,&c);
mat[i][b]=max(mat[i][b],c);
}
}
memset(d,-,sizeof(d));
dp(,);
int res=;
for(int i=; i<=m; ++i) res=max(res,d[][i]);
printf("%d\n",res);
}
return ;
}

HDU4044 GeoDefense(有点不一样的树上背包)的更多相关文章

  1. luogu 2014 选课 树上背包

    树上背包 #include<bits/stdc++.h> using namespace std; ; const int inf=0x3f3f3f3f; vector<int> ...

  2. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  3. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  4. 【BZOJ】4033: [HAOI2015]树上染色 树上背包

    [题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 ...

  5. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  6. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

  7. luogu P2515 [HAOI2010]软件安装 |Tarjan+树上背包

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为MM计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但 ...

  8. 【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)

    树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做 ...

  9. [CSP-S模拟测试]:点亮(状压DP+树上背包DP)

    题目传送门(内部题121) 输入格式 第一行,一个正整数$n$. 第二行,$n-1$个正整数$p_2,p_3,...,p_n$.保证$p_u$是在$1$到$u-1$中等概率随机选取的. 接下来$n$行 ...

随机推荐

  1. sqlmap参数大全

    -u #注入点-f #指纹判别数据库类型-b #获取数据库版本信息-p #指定可测试的参数(?page=1&id=2 -p “page,id”)-D “”#指定数据库名-T “”#指定表名-C ...

  2. Windows/Centos安装GO语言环境

    转载:http://www.haiyun.me/archives/1009.html Centos下使用epel源安装: 1 yum install golang Centos/Linux下源码安装g ...

  3. poj1789 Truck History

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20768   Accepted: 8045 De ...

  4. Linux EOF使用

    # cat << EOF > fileB   用法 例: vi ceshi.sh cat<<eof>file1 aaaa bbbb cccc dddd eof 操作 ...

  5. 【OpenStack】OpenStack系列10之Horizon详解

    一.参考其他资料即可.可以采用haproxy+apache+horizon方式部署,haproxy/httpd支持ssl.

  6. css用标签选择器在本页写样式

    <title>静夜思</title><style type="text/css">p{ color:#ff0000;   font-size:2 ...

  7. MyBatis3: There is no getter for property named 'code' in 'class java.lang.String'

    mybatis3  : mysql文如下,传入参数为string类型时‘preCode’,运行报错为:There is no getter for property named 'preCode' i ...

  8. (转)SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁

    在上一篇中忘记了一个细节.Range T-K 到底代表了什么?Range T-K Lock 代表了在 SERIALIZABLE 隔离级别中,为了保护范围内的数据不被并发的事务影响而使用的一类锁模式(避 ...

  9. @SuppressWarnings注解

    简介:java.lang.SuppressWarnings是J2SE 5.0中标准的Annotation之一.可以标注在类.字段.方法.参数.构造方法,以及局部变量上.作用:告诉编译器忽略指定的警告, ...

  10. 前台js分页,自己手写逻辑

    js代码如下: //设置分页 var pageSize = 10; //设置一次显示多少页 var pageLimit = 5; $(function(){ //查询所有内容 $.post(ctx + ...