LeetCode:Unique Binary Search Trees I II
LeetCode:Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
分析:依次把每个节点作为根节点,左边节点作为左子树,右边节点作为右子树,那么总的数目等于左子树数目*右子树数目,实际只要求出前半部分节点作为根节点的树的数目,然后乘以2(奇数个节点还要加上中间节点作为根的二叉树数目)
递归代码:为了避免重复计算子问题,用数组保存已经计算好的结果
class Solution {
public:
int numTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int nums[n+]; //nums[i]表示i个节点的二叉查找树的数目
memset(nums, , sizeof(nums));
return numTreesRecur(n, nums);
}
int numTreesRecur(int n, int nums[])
{
if(nums[n] != )return nums[n];
if(n == ){nums[] = ; return ;}
int tmp = (n>>);
for(int i = ; i <= tmp; i++)
{
int left,right;
if(nums[i-])left = nums[i-];
else left = numTreesRecur(i-, nums);
if(nums[n-i])right = nums[n-i];
else right = numTreesRecur(n-i, nums);
nums[n] += left*right;
}
nums[n] <<= ;
if(n % != )
{
int val;
if(nums[tmp])val = nums[tmp];
else val = numTreesRecur(tmp, nums);
nums[n] += val*val;
}
return nums[n];
}
};
非递归代码:从0个节点的二叉查找树数目开始自底向上计算,dp方程为nums[i] = sum(nums[k-1]*nums[i-k]) (k = 1,2,3...i)
class Solution {
public:
int numTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int nums[n+]; //num[i]表示i个节点的二叉查找树数目
memset(nums, , sizeof(nums));
nums[] = ;
for(int i = ; i <= n; i++)
{
int tmp = (i>>);
for(int j = ; j <= tmp; j++)
nums[i] += nums[j-]*nums[i-j];
nums[i] <<= ;
if(i % != )
nums[i] += nums[tmp]*nums[tmp];
}
return nums[n];
}
};
LeetCode:Unique Binary Search Trees II
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
按照上一题的思路,我们不仅仅要保存i个节点对应的BST树的数目,还要保存所有的BST树,而且1、2、3和4、5、6虽然对应的BST数目和结构一样,但是BST树是不一样的,因为节点值不同。
我们用数组btrees[i][j][]保存节点i, i+1,...j-1,j构成的所有二叉树,从节点数目为1的的二叉树开始自底向上最后求得节点数目为n的所有二叉树 本文地址
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode *> generateTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
vector<vector<vector<TreeNode*> > > btrees(n+, vector<vector<TreeNode*> >(n+, vector<TreeNode*>()));
for(int i = ; i <= n+; i++)
btrees[i][i-].push_back(NULL); //为了下面处理btrees[i][j]时 i > j的边界情况
for(int k = ; k <= n; k++)//k表示节点数目
for(int i = ; i <= n-k+; i++)//i表示起始节点
{
for(int rootval = i; rootval <= k+i-; rootval++)
{//求[i,i+1,...i+k-1]序列对应的所有BST树
for(int m = ; m < btrees[i][rootval-].size(); m++)//左子树
for(int n = ; n < btrees[rootval+][k+i-].size(); n++)//右子树
{
TreeNode *root = new TreeNode(rootval);
root->left = btrees[i][rootval-][m];
root->right = btrees[rootval+][k+i-][n];
btrees[i][k+i-].push_back(root);
}
}
}
return btrees[][n];
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3448569.html
LeetCode:Unique Binary Search Trees I II的更多相关文章
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- LeetCode: Unique Binary Search Trees II 解题报告
Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...
- leetcode -day28 Unique Binary Search Trees I II
1. Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search t ...
- LeetCode - Unique Binary Search Trees II
题目: Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. F ...
- Leetcode:Unique Binary Search Trees & Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- Unique Binary Search Trees I & II
Given n, how many structurally unique BSTs (binary search trees) that store values 1...n? Example Gi ...
- LeetCode——Unique Binary Search Trees II
Question Given an integer n, generate all structurally unique BST's (binary search trees) that store ...
- [Leetcode] Unique binary search trees ii 唯一二叉搜索树
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
随机推荐
- Android中ListView 控件与 Adapter 适配器如何使用?
一个android应用的成功与否,其界面设计至关重要.为了更好的进行android ui设计,我们常常需要借助一些控件和适配器.今天小编在android培训网站上搜罗了一些有关ListView 控件与 ...
- win7开启休眠功能
win7有的系统默认关机选项没有休眠功能,其实是没打开. cmd-> powercfg -hibernate on 即可
- Linux磁盘、目录、文件操作命令
0x01. Linux磁盘分区与目录结构 ① 主分区.拓展分区.逻辑分区:早期主引导扇区MBR用64B存放主分区信息,每个分区用16B,因而上限为4个主分区,后来,因分区需求,引入拓展分区(类主分区) ...
- INFORMATICA 的调优之 INFORMATICA SERVER TUNING
INFORMATICA SERVER的调优我认为主要从两个级别来做,一个是MAPPING级别,一个是SESSION级别. 对于MAPPING级别的调优: 一 对MAPPING数据流向的优化: 1 控 ...
- (二)我的Makefile学习冲动&&编译过程概述
前言 一 年轻的冲动 二 学习曲线 1 Makefile基本语法 2 bash基础 3 world 三 编译过程概述 1 主机预装工具 2 编译host工具 3 编译交叉工具链 4 编译内核模块 5 ...
- Git操作指令进阶
注意: 学习前请先配置好Git客户端 相关文章:Git客户端图文详解如何安装配置GitHub操作流程攻略 官方中文手册:http://git-scm.com/book/zh GIT 学习手册简介 本站 ...
- 备忘:文本编辑器(z.B. Sublime Text 2)策略,git策略
1.以Sublime Text 2 为例: 新建一个test.py文件,敲完例程 代码 之后,再另存为比如 if.py, list_tuple.py云云 而test.py可以一直用来编辑 2.git ...
- django中的站点管理
所谓网页开发是有趣的,管理界面是千篇一律的.所以就有了django自动管理界面来减少重复劳动. 一.激活管理界面 1.django.contrib包 django自带了很多优秀的附加组件,它们都存在于 ...
- DAC使用基本准则
DAC Nyquist Zones, Zero Order Hold, and Images why do the Fout images exist in every Nyquist zone? W ...
- 分享十二个有用的jQuery代码
分享7个有用的jQuery代码 这篇文章主要介绍了7个有用的jQuery技巧分享,本文给出了在新窗口打开链接.设置等高的列.jQuery预加载图像.禁用鼠标右键.设定计时器等实用代码片段,需要的朋友可 ...