http://acm.hdu.edu.cn/showproblem.php?pid=5768

Lucky7

Problem Description
 
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 
Input
 
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
 
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
 
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
 
Case #1: 7
Case #2: 14
 
Hint
 

For Case 1: 7,21,42,49,70,84,91 are the seven numbers. For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
 
题意:找出[l, r]里面可以被 7 整除的并且不满足任意一个同余式的数的个数。
 #include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <queue>
#include <cmath>
using namespace std;
typedef long long LL;
#define N 20 LL p[N], a[N];
int bit[N];
int n; LL mul(LL a, LL b, LL m)
{
//快速乘法
LL ans = ;
while(b) {
if(b & ) ans = (ans + a) % m;
a <<= ;
a %= m;
b >>= ;
}
return ans;
} LL exgcd(LL a, LL b, LL &x, LL &y)
{
if(b == ) {
x = ;
y = ;
return a;
}
LL r = exgcd(b, a%b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return r;
} LL CRT(LL x, LL y)
{
//中国剩余定理: 找同时满足多个同余式的解
LL M = , ans = ;
for(int i = ; i <= n; i++) {
if(bit[i]) M *= p[i];
}
for(int i = ; i <= n; i++) {
if(bit[i]) {
LL x, y, Mi;
Mi = M / p[i];
exgcd(Mi, p[i], x, y);
x = (x % p[i] + p[i]) % p[i];
ans = (ans + mul(Mi * a[i] % M, x, M) % M + M) % M;
//ans找出来的是在 M 以内的特解即最小正整数解
}
}
//每过 M 可以有一个解
LL res = (y - ans + M) / M - (x - - ans + M) / M;
return res;
} void solve(LL x, LL y)
{
bit[n] = ;
LL ans = ;
int all = << n;
for(int i = ; i < all; i++) {
int tmp = i, k = ;
for(int j = ; j < n; j++) {
bit[j] = tmp & ;
tmp >>= ;
k += bit[j];
}
k = k & ? - : ;
//k是计算包含多少个同余式
//容斥原理: 奇数减,偶数加,具体可以看《组合数学》P108
//计算出不具有性质(满足任意一个同余式)的数的数量
ans += CRT(x, y) * k;
}
printf("%I64d\n", ans);
} int main()
{
int t;
scanf("%d", &t);
for(int cas = ; cas <= t; cas++) {
LL x, y;
scanf("%d%I64d%I64d", &n, &x, &y);
for(int i = ; i < n; i++)
scanf("%I64d%I64d", &p[i], &a[i]);
p[n] = , a[n] = ;
printf("Case #%d: ", cas);
solve(x, y);
}
return ;
}

HDU 5768:Lucky7(中国剩余定理 + 容斥原理)的更多相关文章

  1. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  2. hdu 5768 Lucky7 中国剩余定理+容斥+快速乘

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  3. HDU 5768 Lucky7(CRT+容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...

  4. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  5. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

  6. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  7. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  8. hdu 5768 Lucky7 容斥

    Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  9. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

随机推荐

  1. iOS -Swift 3.0 -Array(数组与可变数组相关属性及用法)

    // // ViewController.swift // Swift-Array // // Created by luorende on 16/9/12. // Copyright © 2016年 ...

  2. Using RestTemplate, how to send the request to a proxy first so I can use my junits with JMeter?

    org.springframework.http.client.SimpleClientHttpRequestFactory java.net.Proxy java.net.Proxy.Type ja ...

  3. 在centos安装docker

    关闭防火墙 iptables -L systemctl disable firewalld.service systemctl stop firewalld.service 配置代理太麻烦了,建议使用 ...

  4. duplicate命令创建physical standby数据库报RMAN-03015 ORA-17628

    The following error is reported trying to create a Physical Standby database using "duplicate f ...

  5. Shell cmd set note

    查看启动信息 dmesg [ 0.000000] Initializing cgroup subsys cpuset[ 0.000000] Initializing cgroup subsys cpu ...

  6. java Servlet中的过滤器Filter

    web.xml中元素执行的顺序listener->filter->struts拦截器->servlet. 1.过滤器的概念 Java中的Filter 并不是一个标准的Servlet ...

  7. 常用SQL操作(MySQL或PostgreSQL)与相关数据库概念

    本文对常用数据库操作及相关基本概念进行总结:MySQL和PostgreSQL对SQL的支持有所不同,大部分SQL操作还是一样的. 选择要用的数据库(MySQL):use database_name; ...

  8. 如何使用Jlink

    下载程序: 1. 连上Jlink的USB到PC上.连接JTAG到GT2440开发板上,选择从Nor Flash 启动. 2. 板子上电后,启动J-Flash ARM .File -> New P ...

  9. .NET: C#: Attribute

    ref: http://www.uml.org.cn/net/200810135.asp ref: http://blog.csdn.net/okvee/article/details/2610349 ...

  10. Andriod环境搭建

    安卓是一款现在在移动端十分流行的系统,本人出于好奇心,希望彻底了解安卓的开发技. 首先了解一下安卓的系统构架,安卓大致分为四层架构,五块区域: 1.Linux内核层 Andriod是基于Linux2. ...