题目链接

这道题需要用到整数唯一分解定理以及约数个数的计算公式。这里我就不再阐述了。

公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的。(即 23*34*57与27*34*53的约数个数相同)但很明显指数放置位置的不同会影响乘积的大小。由于所有比n小的数的约数个数都比他的约数个数小,换而言之就是约数个数不相等。即 相同约数个数,该数越小越好。那么我们运用贪心思想。尽量大的指数放置于尽量小的底数上。

题目的数据范围小于231,所以指数最大31,由之前的推论,若底数递增,则有指数递减。直接dfs。减一下枝,质因数最多只有十个,这题就十分简单了。

#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
ll read(){
ll res=,f=;
char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
res=res*+(ch-'');
ch=getchar();
}
return res*f;
}
int p[]={,,,,,,,,,,};
ll n,s,s1;
void f(ll x,ll y,ll m,ll z){
if(x>=)return;
ll k=;
for(int i=;i<=m;++i){
k*=p[x];
if(y*k>n)return;
if(z*(i+)==s1&&y*k<s)s=y*k;
if(z*(i+)>s1)s=y*k,s1=z*(i+);
f(x+,y*k,i,z*(i+));
}
}
int main(){
n=read();
f(,,,);
cout<<s;
return ;
}

[POI2002][HAOI2007]反素数(Antiprime)的更多相关文章

  1. Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925

    题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...

  2. 洛谷 P1463 [POI2002][HAOI2007]反素数

    题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...

  3. [POI2002][HAOI2007]反素数

    题意 反素数 想法 证明这样一个结论 对于一个可行的反素数\(p\) \(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_ ...

  4. [POI2002][HAOI2007]反素数 数论 搜索 好题

    题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...

  5. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  6. 数学结论【p1463】[POI2002][HAOI2007]反素数

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  7. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  8. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  9. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

随机推荐

  1. metasploit 教程之信息收集

    信息收集 信息收集范围很大,可以从不同层面,不同维度进行信息收集. 系统补丁 我们知道目标机器缺少什么补丁就意味着存在与其对应的漏洞.我们可以利用这些漏洞来达到我们渗透攻击的目的. # 使用的模块 u ...

  2. Oracle 关键字、高级函数的使用

    1.序列.唯一标识 查询时,可以添加递增序列 rownum 表的数据每一行都有一个唯一的标识 rowid 2.函数 单行:查询多条数据 如:to_date() 多行:查询总结数据,一般用于group ...

  3. Pytorch 常用函数

    1. torch.renorm(input, p, dim, maxnorm, out=None) → Tensor Returns a tensor where each sub-tensor of ...

  4. Huber Loss

    Huber Loss 是一个用于回归问题的带参损失函数, 优点是能增强平方误差损失函数(MSE, mean square error)对离群点的鲁棒性. 当预测偏差小于 δ 时,它采用平方误差, 当预 ...

  5. AGC电路以及AD8347正交解调芯片

    1.AGC电路的工作原理 1.1AGC电路的用途 随着电磁环境的日益恶化, 不同频段电磁信号之间的相互串扰, 以及可能出现的人为干扰, 将会导致接收机输入端口的信号动态范围较大, 一旦出现电路饱和或是 ...

  6. Git常用的操作

    1.git使用的常规操作     git pull——>编辑——>git add——>git commit——>git push 用git add把文件添加进去,实际上就是把文 ...

  7. cefsharp解决闪烁

    CefSharp禁用GPU的命令行参数 其中,Major和Minor分别指代系统的主版本(大版本).次版本(小版本)版本号.其中指定了Windows7系统会禁用 GPU.,突发奇想,是否windows ...

  8. java类型转换小技巧

    mysql 之排序显示行号 select @r := @r+1 as rownum,birth,cardNo from card,(select @r:=0)torder by birth ASC

  9. avalonjs学习笔记之实现一个简单的查询页

    官网地址:http://avalonjs.coding.me/ 因为是为了学习js,所以对样式没什么要求,先放效果图: 步骤为:初始页面-------条件查询-------编辑员工1-------保存 ...

  10. VUE中总的逻辑关系和移动端mint-ui的应用接触

    1.mint-ui官网:https://mint-ui.github.io/#!/zh-cn 可以点击开始使用,里边有详细的讲解.安装mint-ui: 官网是: 但是应用没有装成功,不知为何,可能是我 ...