八大排序算法——快速排序(动图演示 思路分析 实例代码Java 复杂度分析)
一、动图演示

二、思路分析
快速排序的思想就是,选一个数作为基数(这里我选的是第一个数),大于这个基数的放到右边,小于这个基数的放到左边,等于这个基数的数可以放到左边或右边,看自己习惯,这里我是放到了左边,
一趟结束后,将基数放到中间分隔的位置,第二趟将数组从基数的位置分成两半,分割后的两个的数组继续重复以上步骤,选基数,将小数放在基数左边,将大数放到基数的右边,在分割数组,,,直到数组不能再分为止,排序结束。
例如从小到大排序:
1. 第一趟,第一个数为基数temp,设置两个指针left = 0,right = n.length,
①从right开始与基数temp比较,如果n[right]>基数temp,则right指针向前移一位,继续与基数temp比较,直到不满足n[right]>基数temp
②将n[right]赋给n[left]
③从left开始与基数temp比较,如果n[left]<=基数temp,则left指针向后移一位,继续与基数temp比较,直到不满足n[left]<=基数temp
④将n[left]赋给n[rigth]
⑤重复①-④步,直到left==right结束,将基数temp赋给n[left]
2. 第二趟,将数组从中间分隔,每个数组再进行第1步的操作,然后再将分隔后的数组进行分隔再快排,
3. 递归重复分隔快排,直到数组不能再分,也就是只剩下一个元素的时候,结束递归,排序完成
根据思路分析,第一趟的执行流程如下图所示:

三、负杂度分析
1. 时间复杂度:
最坏情况就是每一次取到的元素就是数组中最小/最大的,这种情况其实就是冒泡排序了(每一次都排好一个元素的顺序)
这种情况时间复杂度就好计算了,就是冒泡排序的时间复杂度:T[n] = n * (n-1) = n^2 + n;
最好情况下是O(nlog2n),推导过程如下:
(递归算法的时间复杂度公式:T[n] = aT[n/b] + f(n) )

所以平均时间复杂度为O(nlog2n)
2. 空间复杂度:
四、Java 代码如下
import java.util.Arrays;
public class quick{
public static void main(String[] args) {
int[] arr = new int[]{10,6,3,8,33,27,66,9,7,88};
f(arr,0,arr.length-1);
System.out.println(Arrays.toString(arr));
}
public static void f(int[] arr,int start,int end){
//直到start=end时结束递归
if(start<end){
int left = start;
int right = end;
int temp = arr[start]; while(left<right){ //右面的数字大于标准数时,右边的数的位置不变,指针向左移一个位置
while(left<right && arr[right]>temp){
right--;
} //右边的数字小于或等于基本数,将右边的数放到左边
arr[left] = arr[right];
left++;
////左边的数字小于或等于标准数时,左边的数的位置不变,指针向右移一个位置
while(left<right && arr[left]<=temp){
left++;
} //左边的数字大于基本数,将左边的数放到右边
arr[right] = arr[left];
} //一趟循环结束,此时left=right,将基数放到这个重合的位置,
arr[left] = temp;
System.out.println(Arrays.toString(arr));
//将数组从left位置分为两半,继续递归下去进行排序
f(arr,start,left);
f(arr,left+1,end);
}
}
}
八大排序算法——快速排序(动图演示 思路分析 实例代码Java 复杂度分析)的更多相关文章
- 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...
- 八大排序算法——希尔(shell)排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插 ...
- 八大排序算法——插入排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 例如从小到大排序: 1. 从第二位开始遍历, 2. 当前数(第一趟是第二位数)与前面的数依次比较,如果前面的数大于当前数,则将这个数放在当前数的位置上,当前数的下标-1 ...
- 八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如 ...
- 八大排序算法——归并排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 归并排序就是递归得将原始数组递归对半分隔,直到不能再分(只剩下一个元素)后,开始从最小的数组向上归并排序 1. 向上归并排序的时候,需要一个暂存数组用来排序, 2. 将 ...
- 八大排序算法——冒泡排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 1. 相邻两个数两两相比,n[i]跟n[j+1]比,如果n[i]>n[j+1],则将连个数进行交换, 2. j++, 重复以上步骤,第一趟结束后,最大数就会被确定 ...
- 八大排序算法——选择排序(动图演示 思路分析 实例代码Java 复杂度分析)
一.动图演示 二.思路分析 1. 第一个跟后面的所有数相比,如果小于(或小于)第一个数的时候,暂存较小数的下标,第一趟结束后,将第一个数,与暂存的那个最小数进行交换,第一个数就是最小(或最大的数) ...
- 八大排序算法——基数排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演 二.思路分析 基数排序第i趟将待排数组里的每个数的i位数放到tempj(j=1-10)队列中,然后再从这十个队列中取出数据,重新放到原数组里,直到i大于待排数的最大位数. 1.数组里的数最 ...
- 转发自:一像素 十大经典排序算法(动图演示)原链接:https://www.cnblogs.com/onepixel/articles/7674659.html 个人收藏所用 侵删
原链接:https://www.cnblogs.com/onepixel/articles/7674659.html 个人收藏所用 侵删 0.算法概述 0.1 算法分类 十种常见排序算法可 ...
随机推荐
- 软件综合实践Axure介绍
首先就是下载安装Axure这款软件了,在百度上搜索“”Axure rp下载“”即可,下载完成后,打开exe安装,根据步骤一步步点击下一步即可完成安装. 运行该软件时会出现类似于填写激活码的东西,这时依 ...
- mui返回上个页面并刷新数据
转 https://blog.csdn.net/mercedescc/article/details/82769264 今天写项目遇到个问题,就是B页面支付操作完成以后,点击返回按钮要到A页面,此时A ...
- java RSA实现私钥签名、公钥验签、私钥加密数据、公钥解密数据
通过OpenSSL生成公私钥文件(如果没有OpenSSL工具建议下载Cmder工具自带OpenSSL指令) 1.生成RSA密钥的方法 genrsa -out private-rsa.key 2048 ...
- MySQL常用dos命令
MySQL的基本目录 登陆MySQL 查看数据库 Show databases; 创建数据库 Create database 数据库的名字; 标准创建语句: Create database if no ...
- THINKPHP and or 模板语句书写
select * from xx where (a = 22 or b = 333) or (c=11 and d=22) $where_1['a'] = array('eq', '222'); $w ...
- shell 构建脚本基础
bash -v test.sh 启用 verbose 调试模式 bash -n test.sh 启用语法检查调试模式 bash -x test.sh 遍历脚本执行过程 一.基础参数 1.shell ...
- Linux性能优化-理解平均负载
1 平均负载含义 当系统变慢的时候,我们一般使用 top 或 uptime 命令来查看系统平均负载情况. 正确定义:单位时间内,系统中处于可运行状态和不可中断状态的平均进程数.错误定义:单位时间内的c ...
- [C++ Primer Plus] 第10章、对象和类(二)课后习题
1. bank.h #include <string> using namespace std; class BankAccount { private: std::string m_na ...
- kNN算法基本原理与Python代码实践
kNN是一种常见的监督学习方法.工作机制简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k各训练样本,然后基于这k个“邻居”的信息来进行预测,通常,在分类任务中可使用“投票法”,即选择这k ...
- Spring HATEOAS的简单认识
HATEOAS: 超媒体作为应用程序状态引擎(HATEOAS)是REST应用程序体系结构的一个组件,它将其与其他网络应用程序体系结构区分开来. 使用HATEOAS,客户端与网络应用程序交互,其应用程序 ...