「luogu2387」[NOI2014] 魔法森林

题目大意

\(n\) 个点 \(m\) 条边的无向图,每条边上有两个权值 \(a,b\),求从 \(1\) 节点到 \(n\) 节点 \(max\{a\}+max\{b\}\) 的最小值。图中可能有重边和自环。\((n \leq 5 \times 10^4 , m \leq 10^5)\)

一句话题解

考虑生成树 ( 过程类似 \(kruskal​\) );

把边按照 \(a\) 从小到大排序,\(1-m\) 枚举边,设边连接的两点为 \(u , v\);

若 \(u , v\) 已经在一个联通块中,则在 \(u\) 到 \(v\) 的路径中找一个 \(b\) 的最大值 \(b_{max}\),如果 \(b_{max} > b当前枚举到的边\),就把 \(当前枚举到的边\) 连接,\(max_b\) 所在的边断开;

若 \(u , v\) 不在一个联通块中,则直接连接;

边用 \(lct\) 维护即可;

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
inline int in() {
int x=0;char c=getchar();bool f=false;
while(c<'0'||c>'9') f|=c=='-', c=getchar();
while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48), c=getchar();
return f?-x:x;
} const int N = 5e4+5, M = 1e5+5;
struct edge {
int u, v, a, b;
friend inline bool operator < (const edge &x, const edge &y) {
return x.a < y.a;
}
}e[M];
int n, m; template<typename T>inline void chk_min(T &_, T __) { _=_<__?_:__; } struct link_cut_tree {
#define lson c[p][0]
#define rson c[p][1]
int c[N+M][2], fa[N+M], val[N+M], max[N+M];
bool rev[N+M]; inline bool nroot(int p) {
return c[fa[p]][0]==p||c[fa[p]][1]==p;
}
inline void push_up(int p) {
max[p]=p;
if(lson&&val[max[lson]]>val[max[p]]) max[p]=max[lson];
if(rson&&val[max[rson]]>val[max[p]]) max[p]=max[rson];
}
inline void rever(int p) {
std::swap(lson, rson);
rev[p]^=1;
}
inline void push_down(int p) {
if(rev[p]) {
if(lson) rever(lson);
if(rson) rever(rson);
rev[p]=false;
}
}
void push_all(int p) {
if(nroot(p)) push_all(fa[p]);
push_down(p);
}
inline void rotate(int x) {
int y=fa[x], z=fa[y], l=c[y][1]==x, r=l^1;
if(nroot(y)) c[z][c[z][1]==y]=x;
fa[x]=z, fa[c[x][r]]=y, fa[y]=x;
c[y][l]=c[x][r], c[x][r]=y;
push_up(y), push_up(x);
}
inline void splay(int x) {
int y, z;
push_all(x);
while(nroot(x)) {
y=fa[x], z=fa[y];
if(nroot(y)) rotate(c[y][0]==x^c[z][0]==y?x:y);
rotate(x);
}
}
inline void access(int p) { for(int s=0;p;p=fa[s=p]) splay(p), rson=s, push_up(p); }
inline void make_root(int p) { access(p), splay(p), rever(p); }
inline void split(int p, int s) { make_root(p), access(s), splay(s); }
inline void link(int p, int s) { make_root(p), fa[p]=s; }
inline void cut(int p, int s) { split(p, s), c[s][0]=fa[p]=0, push_up(s); }
inline int select(int p, int s) { split(p, s); return max[s]; }
#undef lson
#undef rson
}lct; struct disjoint_set_union {
int fa[N];
int get_fa(int u) { return u==fa[u]?u:fa[u]=get_fa(fa[u]); }
inline int & operator [] (int u) { return fa[u]; }
}dsu; inline int kruskal() {
int ret=-1;
std::sort(e+1, e+1+m);
for(int i=1;i<=n;++i) dsu[i]=i;
for(int i=n+1;i<=n+m;++i) lct.val[i]=e[i-n].b;
for(int i=1;i<=n+m;++i) lct.max[i]=i;
for(int i=1;i<=m;++i) {
if(e[i].u==e[i].v) continue;
int u=dsu.get_fa(e[i].u), v=dsu.get_fa(e[i].v);
if(u==v) {
int k=lct.select(e[i].u, e[i].v);
if(lct.val[k]>e[i].b) {
lct.cut(e[k-n].u, k), lct.cut(k, e[k-n].v);
lct.link(e[i].u, i+n), lct.link(i+n, e[i].v);
}
}
else {
dsu[u]=v;
lct.link(e[i].u, i+n), lct.link(i+n, e[i].v);
}
if(dsu.get_fa(1)==dsu.get_fa(n)) {
lct.split(1, n);
if(ret==-1) ret=lct.val[lct.max[n]]+e[i].a;
else chk_min(ret, lct.val[lct.max[n]]+e[i].a);
}
}
return ret;
} int main() {
n=in(), m=in();
for(int i=1;i<=m;++i)
e[i]=(edge){in(), in(), in(), in()};
printf("%d\n", kruskal());
return 0;
}

「luogu2387」[NOI2014] 魔法森林的更多相关文章

  1. NOI2014 魔法森林

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 106  Solved: 62[Submit][Status] ...

  2. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  3. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  4. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  5. BZOJ_3669_[Noi2014]魔法森林_LCT

    BZOJ_3669_[Noi2014]魔法森林_LCT Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节 ...

  6. bzoj 3669: [Noi2014]魔法森林 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec  ...

  7. P2387 [NOI2014]魔法森林(LCT)

    P2387 [NOI2014]魔法森林 LCT边权维护经典题 咋维护呢?边化为点,边权变点权. 本题中我们把边对关键字A进行排序,动态维护关键字B的最小生成树 加边后出现环咋办? splay维护最大边 ...

  8. [NOI2014]魔法森林 LCT

    题面 [NOI2014]魔法森林 题解 一条路径的代价为路径上的\(max(a[i]) + max(b[i])\),因为一条边同时有$a[i], b[i]$2种权值,直接处理不好同时兼顾到,所以我们考 ...

  9. bzoj 3669: [Noi2014]魔法森林 -- 动点spfa

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...

随机推荐

  1. 解决mySQL数据库锁表问题。

    先用这条命令查询数据库阻塞的进程 SELECT * FROM information_schema.innodb_trx 找到后在根据下图这个字段:try_mysql_thread_id 作为这条数据 ...

  2. vuex 状态管理 通俗理解

    解释:集中响应式数据管理,一处修改多处使用,主要应用于大中型项目. 安装: 第一:index.js:(注册store仓库) npm install vuex -D // 下载vuex import V ...

  3. QQ浏览器、火狐浏览器中页面有点大的问题记录

    做页面时候,发现火狐和腾讯QQ浏览器有个问题,就是会将页面显示的比较大,像点了缩放比例120%似的,事实上缩放比例是100%,很奇怪. 甚至面对这个问题,连腾讯公司主页也会放大,也让我很困惑. 比如: ...

  4. 定时任务调度工作(学习记录 二)timer定时函数的用法

    schedule的四种用法: 1.schedule(task,time) 参数: task----所安排的任务 time----执行任务的时间 作用: 在时间等于或超过time的时候执行且仅执行一次t ...

  5. java篇 之 java概念

    Jvm:java虚拟机,让java拥有跨平台的能力,一次编写,导出运行 Java优点:提供了一个解释性环境(多线程,可执行程序跨平台,加快开发,支持动态更新) 没有指针,有垃圾将回收器(回收内存) 执 ...

  6. 高斯消元与行列式求值 part1

    两道模板题,思路与算法却是相当经典. 先说最开始做的行列式求值,题目大致为给一个10*10的行列式,求其值 具体思路(一开始看到题我的思路): 1.暴算,把每种可能组合试一遍,求逆序数,做相应加减运算 ...

  7. MT【328】向量里的最佳逼近

    已知平面向量$\overrightarrow {a},\overrightarrow {b}$满足$|\overrightarrow {a}|=4,|\overrightarrow {b}|=2$.若 ...

  8. react native 封装TextInput组件

    上一篇 react-native文章提到了TextInput组件对安卓的适配问题,因此对该组件进行封装很有必要. 文章地址  react native定报预披项目知识点总结 TextInput介绍 官 ...

  9. Codeforces Round #554 (Div. 2)自闭记

    A 签到 #include<bits/stdc++.h> using namespace std; ],t[],ans; int main() { scanf("%d%d&quo ...

  10. C#使用WindowsMediaPlayer实现视频播放

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...