在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous Besov spaces. Comput. Math. Appl. 75 (2018), no. 3, 1060--1065] 中, 我们讨论了 $$\bee\label{EL:Simple} \seddm{ \p_t\bbu   +(\bbu\cdot\n)\bbu     -\lap\bbu+\n P     =-\n\cdot[\n\bbd \odot\n\bbd],\\ \p_t\bbd+(\bbu\cdot\n)\bbd   =\lap \bbd     -\bbf(\bbd),\\ \Div\bbu=0,\\ (\bbu,\bbd)|_{t=0}=(\bbu_0,\bbd_0), } \eee$$ 说明如果 $$\bee\label{thm:EL:Simple:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad 0<r<1, \eee$$ 则解光滑. 也讨论了 $$\bee\label{EL:d=1}   \seddm{   \p_t\bbu     +(\bbu\cdot\n)\bbu     -\lap \bbu     +\n P=-\n\cdot (\n\bbd\odot\n\bbd),\\   \p_t\bbd+(\bbu\cdot\n)\bbd     =\lap\bbd+|\n\bbd|^2\bbd,\\   \Div\bbu=0,\quad |\bbd|=1,\\   (\bbu,\bbd_0)|_{t=0}=(\bbu_0,\bbd_0).   }   \eee$$ 说明如果 $$\bee\label{thm:EL:Simple:d=1:reg}   \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad   \n\bbd\in L^\frac{2}{1+s}(0,T;\dot B^s_{\infty,\infty}(\bbR^3)),\quad -1<r,s<1,   \eee$$   则解光滑. 最后讨论了一般的 Ericksen-Leslie 系统 $$\bee\label{EL}   \seddm{   \p_t\bbu     +(\bbu\cdot\n)\bbu     -\lap\bbu     +\n P       =-\Div \sez{(\n \bbd)^t \cfrac{\p W(\bbd,\n\bbd)}{\p (\n\bbd)}},\\   \p_t\bbd     +(\bbu\cdot\n)\bbd       =\bbh-(\bbd\cdot \bbh)\bbd,\\   \Div\bbu=0,\quad |\bbd|=1,\\   (\bbu,\bbd)|_{t=0}=(\bbu_0,\bbd_0),   }   \eee$$ 说明如果 $$\bee\label{thm:EL:reg}   \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad   \n\bbd\in L^\frac{2}{1+s}(0,T;\dot B^s_{\infty,\infty}(\bbR^3)),\quad -1<r,s<1,   \eee$$   则解光滑.

链接: https://pan.baidu.com/s/1raiKJeO 密码: eqfb

液晶流在齐次 Besov 空间中的正则性准则的更多相关文章

  1. QGE 在齐次 Besov 空间中的准则

    在 [Zhang, Zujin. On the blow-up criterion for the quasi-geostrophic equations in homogeneous Besov s ...

  2. 解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程

    解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程 昨天开发人员跟我说,执行一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅 ...

  3. Computer Science Theory for the Information Age-3: 高维空间中的高斯分布和随机投影

    高维空间中的高斯分布和随机投影 (一)在高维球体表面产生均匀分布点的方法 我们来考虑一个采样问题,就是怎样在高维单位球体的表面上均匀的采样.首先,考虑二维的情况,就是在球形的周长上采样.我们考虑如下方 ...

  4. Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds

    高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...

  5. Computer Science Theory for the Information Age-1: 高维空间中的球体

    高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...

  6. 2D和3D空间中计算两点之间的距离

    自己在做游戏的忘记了Unity帮我们提供计算两点之间的距离,在百度搜索了下. 原来有一个公式自己就写了一个方法O(∩_∩)O~,到僵尸到达某一个点之后就向另一个奔跑过去 /// <summary ...

  7. Confluence 6 空间中的常用宏

    小组空间(Team Spaces): 介绍小组:User Profile Macro 将会对 Confluence 的用户显示属性的简单摘要,属性照片,联系方式. 在你小组中分享通知和新闻:The B ...

  8. Confluence 6 内容在空间中是如何组织的

    你可以将空间考虑为一个容器,在这个容器中保持了有关你项目中所有重要的东西,包括小组,项目或者项目相关的工作.这些东西有很高的自主性,这表示的是每个空间都有自己的的页面,文件,评论以及 RSS 新闻源. ...

  9. WebGL和ThreeJs学习6--射线法确定3D空间中所选物体

    一.在 threejs 中如何确定下图3D空间中鼠标点击位置的 object 对象? 二.射线法确定步骤及代码 //Three.js提供一个射线类Raycaster来拾取场景里面的物体.更方便的使用鼠 ...

随机推荐

  1. 记录Nginx模块开发

    --with-http_stub_status_module模块:Nginx的客户端状态 Syntax:stub_status Default:-- Content:server,location l ...

  2. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  3. springMVC DispatcherServlet类关系图

  4. 需求规格说明书(SRS)特点

    需求说明书的7大特征: 完整性 正确性 可行性 必要性 划分优先级 无二义性 可验证性 每条需求规格说明书的4大特点: 完整性 一致性 可修改性 可跟踪性 需求管理就是一种获取.组织并记录系统需求的系 ...

  5. JDK1.8源码(九)——java.util.LinkedHashMap 类

    前面我们介绍了 Map 集合的一种典型实现 HashMap ,关于 HashMap 的特性,我们再来复习一遍: ①.基于JDK1.8的HashMap是由数组+链表+红黑树组成,相对于早期版本的 JDK ...

  6. Golang 入门 : 数组

    数组是指一系列同一类型数据的集合.数组中包含的每个数据被称为数组元素(element),这种类型可以是任意的原始类型,比如 int.string 等,也可以是用户自定义的类型.一个数组包含的元素个数被 ...

  7. c++ fmt 库安装和使用示例

    安装: 1 git clone  https://github.com/fmtlib/fmt.git 2. cmake . 3. make && make install  #incl ...

  8. 关于token登录逻辑分析

    前言: token登录上一家公司也写过,迷迷糊糊的, 现在做一个APP,需求为每次调用接口都会传token,登录注册等特殊的除外, 逻辑整理一下还是比较简单的 主要的问题还是,如何在框架中找到较好的插 ...

  9. nginx代理部署Vue与React项目

    nginx代理部署Vue与React项目 一,介绍与需求 1.1,介绍 Nginx (engine x) 是一个高性能的HTTP和反向代理服务,也是一个IMAP/POP3/SMTP服务.Nginx是由 ...

  10. SparkStreaming+Kafa+HBase

    1. 总结一些概念: 安装zookeeper3.4.6 cp zoo_sample.cfg zoo.cfgvim zoo.cfg tickTime=2000initLimit=10syncLimit= ...