I/O模型之四:Java 浅析I/O模型

一、阻塞IO与非阻塞IO

阻塞IO:

  通常在进行同步I/O操作时,如果读取数据,代码会阻塞直至有 可供读取的数据。同样,写入调用将会阻塞直至数据能够写入。传统的Server/Client模式会基于TPR(Thread per Request),服务器会为每个客户端请求建立一个线程,由该线程单独负责处理一个客户请求。这种模式带来的一个问题就是线程数量的剧增,大量的线程会增大服务器的开销。大多数的实现为了避免这个问题,都采用了线程池模型,并设置线程池线程的最大数量,这由带来了新的问题,如果线程池中有200个线程,而有200个用户都在进行大文件下载,会导致第201个用户的请求无法及时处理,即便第201个用户只想请求一个几KB大小的页面。传统的 Server/Client模式如下图所示:

非阻塞IO(NIO):

  NIO中非阻塞I/O采用了基于Reactor模式的工作方式,I/O调用不会被阻塞,相反是注册感兴趣的特定I/O事件,如可读数据到达,新的套接字连接等等,在发生特定事件时,系统再通知我们。NIO中实现非阻塞I/O的核心对象就是Selector,Selector就是注册各种I/O事件地 方,而且当那些事件发生时,就是这个对象告诉我们所发生的事件,如下图所示:

从图中可以看出,当有读或写等任何注册的事件发生时,可以从Selector中获得相应的SelectionKey,同时从 SelectionKey中可以找到发生的事件和该事件所发生的具体的SelectableChannel,以获得客户端发送过来的数据。

非阻塞指的是IO事件本身不阻塞,但是获取IO事件的select()方法是需要阻塞等待的.区别是阻塞的IO会阻塞在IO操作上, NIO阻塞在事件获取上,没有事件就没有IO, 从高层次看IO就不阻塞了.也就是说只有IO已经发生那么我们才评估IO是否阻塞,但是select()阻塞的时候IO还没有发生,何谈IO的阻塞呢?NIO的本质是延迟IO操作到真正发生IO的时候,而不是以前的只要IO流打开了就一直等待IO操作。

二.NIO原理及通信模型

Java NIO是在jdk1.4开始使用的,它既可以说成“新I/O”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:

1. 由一个专门的线程来处理所有的 IO 事件,并负责分发。 
2. 事件驱动机制:事件到的时候触发,而不是同步的去监视事件。 
3. 线程通讯:线程之间通过 wait,notify 等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。

阅读过一些资料之后,下面贴出我理解的java NIO的工作原理图:

(注:每个线程的处理流程大概都是读取数据、解码、计算处理、编码、发送响应。)

Java NIO的服务端只需启动一个专门的线程来处理所有的 IO 事件,这种通信模型是怎么实现的呢?呵呵,我们一起来探究它的奥秘吧。java NIO采用了双向通道(channel)进行数据传输,而不是单向的流(stream),在通道上可以注册我们感兴趣的事件。一共有以下四种事件:

事件名 对应值
服务端接收客户端连接事件 SelectionKey.OP_ACCEPT(16)
客户端连接服务端事件 SelectionKey.OP_CONNECT(8)
读事件 SelectionKey.OP_READ(1)
写事件 SelectionKey.OP_WRITE(4)

服务端和客户端各自维护一个管理通道的对象,我们称之为selector,该对象能检测一个或多个通道 (channel) 上的事件。我们以服务端为例,如果服务端的selector上注册了读事件,某时刻客户端给服务端发送了一些数据,阻塞I/O这时会调用read()方法阻塞地读取数据,而NIO的服务端会在selector中添加一个读事件。服务端的处理线程会轮询地访问selector,如果访问selector时发现有感兴趣的事件到达,则处理这些事件,如果没有感兴趣的事件到达,则处理线程会一直阻塞直到感兴趣的事件到达为止。下面是我理解的java NIO的通信模型示意图:

三、Java NIO 概述

Java NIO 由以下几个核心部分组成:

  • Channels
  • Buffers
  • Selectors

虽然Java NIO 中除此之外还有很多类和组件,但在我看来,Channel,Buffer 和 Selector 构成了核心的API。其它组件,如Pipe和FileLock,只不过是与三个核心组件共同使用的工具类。因此,在概述中我将集中在这三个组件上。其它组件会在单独的章节中讲到。

Channel 和 Buffer

基本上,所有的 IO 在NIO 中都从一个Channel 开始。Channel 有点象流。 数据可以从Channel读到Buffer中,也可以从Buffer 写到Channel中。这里有个图示:

Channel和Buffer有好几种类型。下面是JAVA NIO中的一些主要Channel的实现:

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

正如你所看到的,这些通道涵盖了UDP 和 TCP 网络IO,以及文件IO。

与这些类一起的有一些有趣的接口,但为简单起见,我尽量在概述中不提到它们。本教程其它章节与它们相关的地方我会进行解释。

以下是Java NIO里关键的Buffer实现:

  • ByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer

这些Buffer覆盖了你能通过IO发送的基本数据类型:byte, short, int, long, float, double 和 char。

Java NIO 还有个 MappedByteBuffer,用于表示内存映射文件, 我也不打算在概述中说明。

Selector

Selector允许单线程处理多个 Channel。如果你的应用打开了多个连接(通道),但每个连接的流量都很低,使用Selector就会很方便。例如,在一个聊天服务器中。

这是在一个单线程中使用一个Selector处理3个Channel的图示:

要使用Selector,得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件,事件的例子有如新连接进来,数据接收等。

NIO使用步骤

服务端步骤:

步骤一:打开ServerSocketChannel,用于监听客户端的连接,它是所有客户端连接的父管道,代码示例如下:

ServerSocketChannel acceptorSvr = ServerSocketChannel.open();

步骤二:绑定监听端口,设置连接为非阻塞模式,示例代码如下:

acceptorSvr.socket().bind(new InetSocketAddress(InetAddress.getByName(“IP”), port));
acceptorSvr.configureBlocking(false);

步骤三:创建Reactor线程,创建多路复用器并启动线程,代码如下:

Selector selector = Selector.open();
New Thread(new ReactorTask()).start();

步骤四:将ServerSocketChannel注册到Reactor线程的多路复用器Selector上,监听ACCEPT事件,代码如下:

SelectionKey key = acceptorSvr.register( selector, SelectionKey.OP_ACCEPT, ioHandler);

步骤五:多路复用器在线程run方法的无限循环体内轮询准备就绪的Key,代码如下:

    int num = selector.select();
Set selectedKeys = selector.selectedKeys();
Iterator it = selectedKeys.iterator();
while (it.hasNext()) {
SelectionKey key = (SelectionKey)it.next();
// ... deal with I/O event ...
}

步骤六:多路复用器监听到有新的客户端接入,处理新的接入请求,完成TCP三次握手,建立物理链路,代码示例如下:

SocketChannel channel = svrChannel.accept();

步骤七:设置客户端链路为非阻塞模式,示例代码如下:

channel.configureBlocking(false);
channel.socket().setReuseAddress(true);

步骤八:将新接入的客户端连接注册到Reactor线程的多路复用器上,监听读操作,用来读取客户端发送的网络消息,代码如下:

SelectionKey key = socketChannel.register( selector, SelectionKey.OP_READ, ioHandler);

步骤九:异步读取客户端请求消息到缓冲区,示例代码如下:

int  readNumber =  channel.read(receivedBuffer);

步骤十:对ByteBuffer进行编解码,如果有半包消息指针reset,继续读取后续的报文,将解码成功的消息封装成Task,投递到业务线程池中,进行业务逻辑编排,示例代码如下:

    Object message = null;
while(buffer.hasRemain())
{
byteBuffer.mark();
Object message = decode(byteBuffer);
if (message == null)
{
byteBuffer.reset();
break;
}
messageList.add(message );
}
if (!byteBuffer.hasRemain())
byteBuffer.clear();
else
byteBuffer.compact();
if (messageList != null & !messageList.isEmpty())
{
for(Object messageE : messageList)
handlerTask(messageE);
}

步骤十一:将POJO对象encode成ByteBuffer,调用SocketChannel的异步write接口,将消息异步发送给客户端,示例代码如下:

socketChannel.write(buffer);

注意:如果发送区TCP缓冲区满,会导致写半包,此时,需要注册监听写操作位,循环写,直到整包消息写入TCP缓冲区,此处不赘述,后续Netty源码分析章节会详细分析Netty的处理策略。
当我们了解创建NIO服务端的基本步骤之后,下面我们将前面的时间服务器程序通过NIO重写一遍,让大家能够学习到完整版的NIO服务端创建。

客户端步骤:

步骤一:打开SocketChannel,绑定客户端本地地址(可选,默认系统会随机分配一个可用的本地地址),示例代码如下:

SocketChannel clientChannel = SocketChannel.open();

步骤二:设置SocketChannel为非阻塞模式,同时设置客户端连接的TCP参数,示例代码如下:

clientChannel.configureBlocking(false);
socket.setReuseAddress(true);
socket.setReceiveBufferSize(BUFFER_SIZE);
socket.setSendBufferSize(BUFFER_SIZE);

步骤三:异步连接服务端,示例代码如下:

boolean connected = clientChannel.connect(new InetSocketAddress(“ip”,port));

步骤四:判断是否连接成功,如果连接成功,则直接注册读状态位到多路复用器中,如果当前没有连接成功(异步连接,返回false,说明客户端已经发送sync包,服务端没有返回ack包,物理链路还没有建立),示例代码如下:

    if (connected)
{
clientChannel.register( selector, SelectionKey.OP_READ, ioHandler);
}
else
{
clientChannel.register( selector, SelectionKey.OP_CONNECT, ioHandler);
}

步骤五:向Reactor线程的多路复用器注册OP_CONNECT状态位,监听服务端的TCP ACK应答,示例代码如下:

clientChannel.register( selector, SelectionKey.OP_CONNECT, ioHandler);

步骤六:创建Reactor线程,创建多路复用器并启动线程,代码如下:

Selector selector = Selector.open();
New Thread(new ReactorTask()).start();

步骤七:多路复用器在线程run方法的无限循环体内轮询准备就绪的Key,代码如下:

int num = selector.select();
Set selectedKeys = selector.selectedKeys();
Iterator it = selectedKeys.iterator();
while (it.hasNext()) {
if (key.isConnectable())
//handlerConnect();
}

步骤九:判断连接结果,如果连接成功,注册读事件到多路复用器,示例代码如下:

if (channel.finishConnect())
registerRead();

步骤十:注册读事件到多路复用器:

clientChannel.register( selector, SelectionKey.OP_READ, ioHandler);

步骤十一:异步读客户端请求消息到缓冲区,示例代码如下:

int  readNumber =  channel.read(receivedBuffer);

步骤十二:对ByteBuffer进行编解码,如果有半包消息接收缓冲区Reset,继续读取后续的报文,将解码成功的消息封装成Task,投递到业务线程池中,进行业务逻辑编排,示例代码如下:

Object message = null;
while(buffer.hasRemain())
{
byteBuffer.mark();
Object message = decode(byteBuffer);
if (message == null)
{
byteBuffer.reset();
break;
}
messageList.add(message );
}
if (!byteBuffer.hasRemain())
byteBuffer.clear();
else
byteBuffer.compact();
if (messageList != null & !messageList.isEmpty())
{
for(Object messageE : messageList)
handlerTask(messageE);
}

步骤十三:将POJO对象encode成ByteBuffer,调用SocketChannel的异步write接口,将消息异步发送给客户端,示例代码如下:

socketChannel.write(buffer);

完整代码:

package com.dxz.springsession.nio.demo6;

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set; public class NIOServer { public static void main(String[] args) throws IOException { new Thread(new ReactorTask()).start(); } public static class ReactorTask implements Runnable { private Selector selector; public ReactorTask() {
try {
// 第一步:打开ServerSocketChannel,用于监听客户端的连接,它是所有客户端连接的父管道
ServerSocketChannel acceptorSvr = ServerSocketChannel.open(); // 第二步:病毒监听端口,设置连接为非阻塞模式
acceptorSvr.socket().bind(new InetSocketAddress(InetAddress.getByName("localhost"), 1234));
acceptorSvr.configureBlocking(false); // 第三步:创建Reactor线程,创建多路复用器并启动线程
selector = Selector.open(); // 第四步:将ServerSocketChannel注册到Reactor线程的多路复用器Selector上,监听Accept事件
SelectionKey key = acceptorSvr.register(selector, SelectionKey.OP_ACCEPT); } catch (UnknownHostException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
} @Override
public void run() {
// 第五步:在run方法中无限循环体内轮询准备就绪的Key
while (true) {
try {
selector.select(1000);
Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> it = selectedKeys.iterator();
SelectionKey key = null;
while (it.hasNext()) {
key = it.next();
it.remove();
try {
if (key.isValid()) {
// 处理新接入的请求消息
if (key.isAcceptable()) {
// 第六步:多路复用器监听到有新的客户端接入,处理新的接入请求,完成TCP三次握手,建立物理链路
ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
SocketChannel sc = ssc.accept();
// 第七步:设置客户端链路为非阻塞模式
sc.configureBlocking(false);
sc.socket().setReuseAddress(true);
// 第八步:将新接入的客户端连接注册到Reactor线程的多路复用器上,监听读操作,读取客户端发送的网络消息
sc.register(selector, SelectionKey.OP_READ);
}
if (key.isReadable()) {
// 第九步:异步读取客户端请求消息到缓存区
SocketChannel sc = (SocketChannel) key.channel();
ByteBuffer readBuffer = ByteBuffer.allocate(1024);
int readBytes = sc.read(readBuffer); // 第十步:对ByteBuffer进行编解码,如果有半包消息指针reset,继续读取后续的报文
if (readBytes > 0) {
readBuffer.flip();
byte[] bytes = new byte[readBuffer.remaining()];
readBuffer.get(bytes);
String body = new String(bytes, "UTF-8");
System.out.println("The time server receive order : " + body);
String currentTime = "QUERY TIME ORDER".equalsIgnoreCase(body)
? new java.util.Date(System.currentTimeMillis()).toString()
: "BAD ORDER";
//写应答
byte[] bytes2 = currentTime.getBytes();
ByteBuffer writeBuffer = ByteBuffer.allocate(bytes2.length);
writeBuffer.put(bytes2);
writeBuffer.flip();
sc.write(writeBuffer);
} else if (readBytes < 0) {
// 对端链路关闭
key.cancel();
sc.close();
} else
; // 读到0字节,忽略
}
}
} catch (Exception e) {
if (key != null) {
key.cancel();
if (key.channel() != null)
key.channel().close();
}
}
}
} catch (Throwable t) {
t.printStackTrace();
}
} } } }

客户端:

package com.dxz.springsession.nio.demo6;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set; public class TimeClientHandle implements Runnable { private String host;
private int port; private Selector selector;
private SocketChannel socketChannel; private volatile boolean stop; public TimeClientHandle(String host, int port) {
this.host = host == null ? "127.0.0.1" : host;
this.port = port;
try {
//第一步:打开SocketChannel,用于创建客户端连接
socketChannel = SocketChannel.open();
//第二步:设置SocketChannel为非阻塞模式
socketChannel.configureBlocking(false);
//第三步:创建多路复用器(在Reactor线程中)
selector = Selector.open(); } catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
} @Override
public void run() {
try {
// 第四步:socketChannel发起连接
if (socketChannel.connect(new InetSocketAddress(host, port))) {
//第五步:如果直接连接成功,则注册到多路复用器上
socketChannel.register(selector, SelectionKey.OP_READ);
//第六步:发送请求消息,读应答
byte[] req = "QUERY TIME ORDER".getBytes();
ByteBuffer writeBuffer = ByteBuffer.allocate(req.length);
writeBuffer.put(req);
writeBuffer.flip();
socketChannel.write(writeBuffer);
if (!writeBuffer.hasRemaining())
System.out.println("Send order 2 server succeed.");
} else
socketChannel.register(selector, SelectionKey.OP_CONNECT);
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
while (!stop) {
try {
//第七步:多路复用器在run的无限循环体内轮询准备就绪的Key
selector.select(1000);
Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> it = selectedKeys.iterator();
SelectionKey key = null;
while (it.hasNext()) {
key = it.next();
it.remove();
try {
if (key.isValid()) {
//第八步:将连接成功的Channel注册到多路复用器上
// 判断是否连接成功
SocketChannel sc = (SocketChannel) key.channel();
if (key.isConnectable()) {
if (sc.finishConnect()) {
sc.register(selector, SelectionKey.OP_READ);
//发送请求消息,读应答
byte[] req = "QUERY TIME ORDER".getBytes();
ByteBuffer writeBuffer = ByteBuffer.allocate(req.length);
writeBuffer.put(req);
writeBuffer.flip();
sc.write(writeBuffer);
if (!writeBuffer.hasRemaining())
System.out.println("Send order 2 server succeed.");
} else
System.exit(1);// 连接失败,进程退出
}
//监听读操作,读取服务端写回的网络信息
if (key.isReadable()) {
//第九步:读取信息到缓冲区
ByteBuffer readBuffer = ByteBuffer.allocate(1024);
int readBytes = sc.read(readBuffer);
if (readBytes > 0) {
readBuffer.flip();
byte[] bytes = new byte[readBuffer.remaining()];
readBuffer.get(bytes);
String body = new String(bytes, "UTF-8");
System.out.println("Now is : " + body);
this.stop = true;
} else if (readBytes < 0) {
// 对端链路关闭
key.cancel();
sc.close();
} else
; // 读到0字节,忽略
}
}
} catch (Exception e) {
if (key != null) {
key.cancel();
if (key.channel() != null)
key.channel().close();
}
}
}
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
} // 多路复用器关闭后,所有注册在上面的Channel和Pipe等资源都会被自动去注册并关闭,所以不需要重复释放资源
if (selector != null)
try {
selector.close();
} catch (IOException e) {
e.printStackTrace();
} } }
package com.dxz.springsession.nio.demo6; public class TimeClient { /**
* @param args
*/
public static void main(String[] args) { int port = 1234;
if (args != null && args.length > 0) {
try {
port = Integer.valueOf(args[0]);
} catch (NumberFormatException e) {
// 采用默认值
}
}
new Thread(new TimeClientHandle("127.0.0.1", port), "TimeClient-001")
.start();
}
}

Java NIO系列教程(一) Java NIO 概述的更多相关文章

  1. 转:Java NIO系列教程(一)Java NIO 概述

    Java NIO 由以下几个核心部分组成: Channels Buffers Selectors 虽然Java NIO 中除此之外还有很多类和组件,但在我看来,Channel,Buffer 和 Sel ...

  2. Java NIO系列教程(十一) Java NIO 与 IO

    Java NIO系列教程(十一) Java NIO与IO 当学习了 Java NIO 和 IO 的 API 后,一个问题马上涌入脑海: 我应该何时使用 IO,何时使用 NIO 呢?在本文中,我会尽量清 ...

  3. Java NIO系列教程(八)JDK AIO编程

    目录: Reactor(反应堆)和Proactor(前摄器) <I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor> <[转]第8章 前摄器(Proa ...

  4. Java NIO系列教程(七) selector原理 Epoll版的Selector

    目录: Reactor(反应堆)和Proactor(前摄器) <I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor> <[转]第8章 前摄器(Proa ...

  5. Java NIO系列教程(三) Channel之Socket通道

    目录: <Java NIO系列教程(二) Channel> <Java NIO系列教程(三) Channel之Socket通道> 在<Java NIO系列教程(二) Ch ...

  6. Java NIO系列教程(二) Channel通道介绍及FileChannel详解

    目录: <Java NIO系列教程(二) Channel> <Java NIO系列教程(三) Channel之Socket通道> Channel是一个通道,可以通过它读取和写入 ...

  7. Java NIO系列教程(十)DatagramChannel

    Java NIO系列教程(十)DatagramChannel 转载自并发编程网 – ifeve.com,本文链接地址: Java NIO系列教程(十) Java NIO DatagramChannel

  8. Java NIO系列教程(四) Scatter 和 Gather

    Java NIO系列教程(四) Scatter 和 Gather Java NIO 开始支持 scatter/gather,scatter/gather 用于描述从 Channel(译者注:Chann ...

  9. Java NIO系列教程(三-十二) Buffer

    原文链接     作者:Jakob Jenkov     译者:airu     校对:丁一 Java NIO中的Buffer用于和NIO通道进行交互.如你所知,数据是从通道读入缓冲区,从缓冲区写入到 ...

  10. 阿里 Java 手册系列教程:为啥强制子类、父类变量名不同?

    摘要: 原创出处 https://www.bysocket.com 「公众号:泥瓦匠BYSocket 」欢迎关注和转载,保留摘要,谢谢! 目录 父子类变量名相同会咋样? 为啥强制子类.父类变量名不同? ...

随机推荐

  1. c/c++ 网络编程 bind函数

    网络编程 bind函数 bind的作用是确定端口号. 正常处理都是先bind,然后listen 如果不bind,直接listen,会是什么结果? 内核会自动随机分配一个端口号 例子: #include ...

  2. poi包冲突问题(excel)

    1. 所需jar包 涉及的poi (1)poi-3.14.jar  (HSSF) 依赖:commons-logging-1.2.jar.log4j-1.2.17.jar.commons-codec.1 ...

  3. SQLServer之触发器简介

    触发器定义 触发器是数据库服务器中发生事件时自动执行的一种特殊存储过程.SQLServer允许为任何特定语句创建多个触发器.它的执行不是由程序调用,也不是手工启动,而是由事件来触发,当对数据库进行操作 ...

  4. WPFの命中测试

    概述:  WPF中的Canvas是常用的一个绘图控件,可以方便地在Canvas中添加我们需要处理的各种元素如:图片.文字等.但Canvas中元素增加到一定数量,并且有重合的时候,我们如何通过在Canv ...

  5. web框架开发-快速认识Django中间件

    中间件 中间件的概念 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出. 因为改变的是全局,所以需要谨慎实用,用不 ...

  6. Oracle的RowId和Rownum

    本文参照来自:https://www.cnblogs.com/whut-helin/p/8024860.html 由sql select p.*,rowid,rownum from promotion ...

  7. [Oracle]Sqlplus 中使用 new_value

    通过再sqlplus 中使用 new_value,可以把从表中查询出来的值,放置到 变量中.然后使用变量时,类似与宏定义一样,就可以像使用表中字段一样方便. 这使得sqlplus 的脚本具备和pl/s ...

  8. 基于 HTML5 的 WebGL 3D 档案馆可视化管理系统

    前言 档案管理系统是通过建立统一的标准以规范整个文件管理,包括规范各业务系统的文件管理的完整的档案资源信息共享服务平台,主要实现档案流水化采集功能.为企事业单位的档案现代化管理,提供完整的解决方案,档 ...

  9. springboot项目利用Swagger2生成在线接口文档

    Swagger简介. Swagger2是一款restful接口文档在线生成和在线调试工具.很多项目团队利用Swagger自动生成接口文档,保证接口文档和代码同步更新.在线调试.简单地说,你可以利用这个 ...

  10. python之yagmail模块--小白博客

    yagmail 实现发邮件 yagmail 可以简单的来实现自动发邮件功能. 安装 pip install yagmail 简单例子 import yagmail #链接邮箱服务器 yag = yag ...