1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解.

证明:

(1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$$ 事实上, 由 ${\bf F}$ 可逆知 ${\bf F}^T{\bf F}$ 正定, 而存在正交阵 ${\bf Q}$, 使得 $$\bex {\bf F}^T{\bf F}={\bf Q}^T\diag(\lm_1,\cdots,\lm_n){\bf Q},\quad(\lm_i>0). \eex$$ 取 $$\bex {\bf D}=\diag(\sqrt{\lm_1},\cdots,\sqrt{\lm_n}),\quad {\bf P}={\bf F}{\bf Q}^T{\bf D}^{-1}, \eex$$ 则可直接验证 ${\bf P},{\bf Q},{\bf D}$ 适合要求.

(2)  取 $$\bex {\bf R}={\bf P}{\bf Q},\quad {\bf U}={\bf Q}^T{\bf D}{\bf Q},\quad {\bf V}={\bf P}{\bf D}{\bf P}^T \eex$$ 即满足条件.

2.  由 $\rd {\bf y}={\bf F}\rd{\bf x}$, ${\bf F}={\bf R}{\bf U}$ 知 $$\bex {\bf y}={\bf R}\rd{\bf z},\quad\rd {\bf z}={\bf U}\rd {\bf x}, \eex$$ 而 $\rd {\bf x}\to\rd {\bf y}$ 是 ``在三个相互正交的方向上的伸长或压缩'' 与 ``刚体旋转'' 的复合.

3.  Cauchy - Green 应变张量

(1)  右: ${\bf C}={\bf F}^T{\bf F}={\bf U}^2$.

(2)  左: ${\bf B}={\bf F}{\bf F}^T={\bf V}^2$.

4.  稳态时, 已知 Cauchy - Green 应变张量求 ${\bf y}$ 的 PDE 组称为 Beltrami 方程组 (超定).

5.  总结: ${\bf B},{\bf C}$ 表示左、右 Cauchy - Green 应变张量, ${\bf F}$ 表示变形.

[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量的更多相关文章

  1. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  2. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  3. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  4. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  5. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  6. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  7. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  8. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  9. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. socket粘包问题解决

    粘包client.send(data1)client.send(data2)这两次send紧挨在一起,处理的时候会放在一起发过去在Linux里每次都粘包,Windows里面某次会出现粘包在两次send ...

  2. 采用synchronized关键字写一个显示锁

    采用synchronized写一个显示锁 public interface MyLock { void lock () throws InterruptedException; void lock(l ...

  3. day 10函数二

    今日内容 '''实参:调用函数,在括号内传入的实际值,值可以为常量.变量.表达式或三者的组合​*****形参:定义函数,在括号内声明的变量名,用来接受外界传来的值​'''​'''注:形参随着函数的调用 ...

  4. 解决 Intellij IDEA Cannot Resolve Symbol ‘XXX’ 问题

    1.java类报错 https://blog.csdn.net/qq_32040767/article/details/77096680 2.类对应的依赖没有加载进来.编译器自身的设置和缓存问题类. ...

  5. iOS开发基础-KVC简单介绍

    一.KVC介绍 键值编码(Key Value Coding,KVC):使开发者不必进行任何操作就可以进行属性的动态读写. KVC操作方法由 NSKeyValueCoding 协议提供,而 NSObje ...

  6. js 对数据进行过滤

    //对数据进行过滤 Array.prototype.filter = Array.prototype.filter || function (func) { var arr = this; var r ...

  7. 基于密度峰值的聚类(DPCA)

    1.背景介绍 密度峰值算法(Clustering by fast search and find of density peaks)由Alex Rodriguez和Alessandro Laio于20 ...

  8. ssh远程 和 上传/下载工具

    常用的ssh远程工具有: putty  : 软件体积小,开源免费. xshell  : 功能强大,亦有免费试用版本 SecureCRT  : 功能强大 ftp  : 该软件用于上传下载文件 通过ssh ...

  9. 【翻译】IdentityServer4:基于资源的配置

    这篇文章基于https://leastprivilege.com/2016/12/01/new-in-identityserver4-resource-based-configuration/进行翻译 ...

  10. CentOS7下解决yum install mysql-server 异常:No package mysql-server available.问题

    yum安装mysql-server没有可用包问题解决方法: step 1: wget http://repo.mysql.com/mysql-community-release-el7-5.noarc ...