1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&+\cfrac{1}{\rho}\n p =\cfrac{1}{\rho}\Div(2\mu{\bf S}) +\cfrac{1}{\rho}\n \sez{\sex{\mu'-\cfrac{2}{3}\mu}\Div{\bf u}} +{\bf F},\\ \cfrac{\rd E}{\rd t} +p\cfrac{\rd \tau}{\rd t}& -\cfrac{2\mu}{\rho}\tr({\bf S}\cdot\n{\bf u}) -\cfrac{1}{\rho}\sex{\mu'-\cfrac{2}{3}\mu}|\Div{\bf u}|^2 =\cfrac{1}{\rho}\Div(\kappa\n T), \eea \eeex$$ 或 $$\bex T\cfrac{\rd S}{\rd t} -\cfrac{2\mu}{\rho}\tr({\bf S}\cdot\n{\bf u}) -\cfrac{1}{\rho}\sex{\mu'-\cfrac{2}{3}\mu} |\Div{\bf u}|^2 =\cfrac{1}{\rho}\Div(\kappa\n T) -\cfrac{\p S}{\p Z}\bar k(\rho,p,Z)TZ. \eex$$

2.  理想反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho\Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&+\cfrac{1}{\rho}\n p={\bf F},\\ \cfrac{\rd S}{\rd t}&=-\cfrac{\p S}{\p Z}\bar k(\rho,p,Z)Z. \eea \eeex$$

[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. centos7下 svn的配置

    安装svn yum install subversion 查看安装版本 svnserve --version 创建svn版本库目录 mkdir -p /root/svn/test 创建svn版本库 s ...

  2. 【Linux基础】iconv命令详解(编码转换)

    对于给定文件把它的内容从一种编码转换成另一种编码. iconv -f GBK -t UTF- file1 -o file2 //将GBK转换为UTF8,输出到file2.没-o那么会输出到标准输出 i ...

  3. .NET CORE学习笔记系列(2)——依赖注入[6]: .NET Core DI框架[编程体验]

    原文https://www.cnblogs.com/artech/p/net-core-di-06.html 毫不夸张地说,整个ASP.NET Core框架是建立在一个依赖注入框架之上的,它在应用启动 ...

  4. nuxt axios代理

    modules: [ '@nuxtjs/axios', ], axios: { //prefix: '/api/', proxy: true // Can be also an object with ...

  5. 详解vuex结合localstorage动态监听storage的变化

    这篇文章主要介绍了详解vuex结合localstorage动态监听storage的变化,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 需求:不同组件间共用同一数据,当一个 ...

  6. Error response from daemon: conflict: unable to remove repository reference 解决方案

    由于前一章演示用的镜像没什么用准备删除 docker image rm hello-world:latest Error response from daemon: conflict: unable ...

  7. C# 将普通字符串转换为二进制字符串

    1.因为项目的需要,在向数据库中添加人的信息时,必须要求是英文或数字,所以想了个办法,将我们人能看懂的字符串编译成二进制字符串转入就行了. 具体的逻辑实现代码如下:

  8. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  9. maven eclipse web 项目 问题 cannot change version of project facet dynamic web module to 3.0

    cannot change version of project facet dynamic web module to 3.0 修改 web.xml 头部 xsi:schemaLocation=&q ...

  10. 【原创】讲讲亿级PV的负载均衡架构

    引言 本来没想写这个题材的,为了某某童鞋能够更好的茁壮成长,临时写一篇负载均衡的.负载均衡,大家可能听过什么3层负载均衡.4层负载均衡.7层负载均衡什么的?那这是怎么分的呢,ok,是根据osi七层网络 ...