PLS:利用PLS(两个主成分的贡献率就可达100%)提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:);
T_train = octane(temp(1:50),:); P_test = NIR(temp(51:end),:);
T_test = octane(temp(51:end),:); k = 2;
[Xloadings,Yloadings,Xscores,Yscores,betaPLS,PLSPctVar,MSE,stats] = plsregress(P_train,T_train,k); figure
percent_explained = 100 * PLSPctVar(2,:) / sum(PLSPctVar(2,:));
pareto(percent_explained)
xlabel('主成分')
ylabel('贡献率(%)')
title('PLS:各个主成分的贡献率—Jason niu') N = size(P_test,1);
T_sim = [ones(N,1) P_test] * betaPLS; error = abs(T_sim - T_test) ./ T_test; R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); result = [T_test T_sim error] figure
plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')
legend('真实值','预测值','location','best')
xlabel('预测样本')
ylabel('辛烷值')
string = {'PLS:利用PLS(两个主成分的贡献率就可达100%)提高《测试集辛烷值含量预测结果对比》的准确度—Jason niu';['R^2=' num2str(R2)]};
title(string)
PLS:利用PLS(两个主成分的贡献率就可达100%)提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu的更多相关文章
- PCA:利用PCA(四个主成分的贡献率就才达100%)降维提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...
- GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu
load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...
- R in action读书笔记(19)第十四章 主成分和因子分析
第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...
- 【笔记】求数据前n个主成分以及对高维数据映射为低维数据
求数据前n个主成分并进行高维数据映射为低维数据的操作 求数据前n个主成分 先前的将多个样本映射到一个轴上以求使其降维的操作,其中的样本点本身是二维的样本点,将其映射到新的轴上以后,还不是一维的数据,对 ...
- ACA:利用ACA解决TSP优化最佳路径问题——Jason niu
load citys_data.mat n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sq ...
- HAWQ + MADlib 玩转数据挖掘之(六)——主成分分析与主成分投影
一.主成分分析(Principal Component Analysis,PCA)简介 在数据挖掘中经常会遇到多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性.例如,网站的" ...
- R语言实战(九)主成分和因子分析
本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是 ...
- [吴恩达机器学习笔记]14降维5-7重建压缩表示/主成分数量选取/PCA应用误区
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 ...
- 机器学习:PCA(使用梯度上升法求解数据主成分 Ⅰ )
一.目标函数的梯度求解公式 PCA 降维的具体实现,转变为: 方案:梯度上升法优化效用函数,找到其最大值时对应的主成分 w : 效用函数中,向量 w 是变量: 在最终要求取降维后的数据集时,w 是参数 ...
随机推荐
- (六) 编写vivid
title: 编写vivid date: 2019/4/23 19:40:00 toc: true --- 编写vivid 新内核对video_buf的封装更好了,很多函数基本上套个名字就好了,这个可 ...
- Shell脚本统计文件行数
Shell脚本统计文件行数 转自 http://www.jb51.net/article/61943.htm 示例:row_count.sh文件 awk '{print NR}' row_cou ...
- MySQL巧建sum索引帮我们提高至少100%的效率
有两个表,表a CREATE TABLE `a` ( `id` mediumint() unsigned NOT NULL AUTO_INCREMENT, `fid` ) unsigned ', `c ...
- 开源顶级持久层框架——mybatis(ibatis)——day02
mybatis第二天 高级映射 查询缓存 和spring整合 课程复习: mybatis是什么? mybatis是一个持久层框架,mybatis ...
- git出现refusing to merge unrelated histories
问题描述当本地分支与远程分支没有共同祖先时,会出现 fatal: refusing to merge unrelated histories 的问题. 解决方案可以使用 rebase 的方式来进行合并 ...
- Codeforces Round #527 (Div. 3) C. Prefixes and Suffixes
题目链接 题意:给你一个长度n,还有2*n-2个字符串,长度相同的字符串一个数前缀一个是后缀,让你把每个串标一下是前缀还是后缀,输出任意解即可. 思路;因为不知道前缀还是后缀所以只能搜,但可以肯定的是 ...
- 提交变更(git commit)
当所有的变更都进入暂存区,就可以使用git commit进行提交了 $ git commit 执行这句话后,会弹出文本编辑区(自己配置的或默认的),文本编辑器可能会显示如下内容 # Please en ...
- HTML5 scada 组态工具
底层引擎 提供了基于WebGL的3D技术的图形组件, WebGL基于OpenGL ES 2.0图形接口,因此WebGL属于底层的图形API接口, 二次开发还是有很高的门槛,通过对WebGL底层技术的封 ...
- Mathematica/偏导数/最小二乘法(线性回归)
a = / a //输出的还是2/123 N[a] //输出的就是小数点 N[a,] //保留三位小数点 Clear[a] Solve[== x^- , x] //结果-3 和 3 Plot[Sin[ ...
- JAVA学习笔记(3)—— 抽象类与接口
1. Java 抽象类 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类. 抽象类 ...