Luogu P5280 [ZJOI2019]线段树
送我退役的神题,但不得不说是ZJOIDay1最可做的一题了
先说一下考场的ZZ想法以及出来后YY的优化版吧
首先发现每次操作其实就是统计出增加的节点个数(原来的不会消失)
所以我们只要统计出线段树上每个节点在进行了\(t\)次操作(有\(2^t\)棵树)是某个点为\(1\)的总个数,令这个值为\(f_x\)
然后考场上用了一种记录该节点+左儿子+右儿子状态的方法,这样可以把答案的贡献全部算到这个点上
但是这样细节巨多且容易算重(漏),所以考场上码了\(200+\)行最后没调出大样例
后来想了一种记录该节点+父亲状态的方法,但是这样贡献就要算重,可能可以利用矩阵来做
接下来我们考虑正解,我们发现细分每一个点的性质其实就只有\(4\)种:
- 直接在该点进行赋值操作,那么此时显然多出的\(2^{t-1}\)棵树的这个节点都是可行的,直接\(f_x+=2^{t-1}\)
- 直接在该点进行
pushdown,那么此时显然多出的树上这个点没有增加(\(1\to 0\)了,\(0\)还是\(0\)),\(f_x\)不变 - 该点不在修改区间内,那么状态直接被复制一遍,\(f_x*=2\)
- 最麻烦的一种,该点(包括这个点)到根的路径上至少有一个点的
tag为\(1\),我们令这个方案数为\(g_x\),那么就有\(f_x+=g_x\)
然后开始考虑怎么维护\(g_x\),那么类似地分成\(3\)类讨论:
- 直接在该点进行
pushdown,那么新增的树的这个节点到根的路径上都不会tag等于\(1\)的情况,\(g_x\)不变 - 直接再该点打标记,多出的\(2^{t-1}\)棵树中它的子树内的点显然都有\(g_x+=2^{t-1}\)
- 该点被访问但不在区间内,和上面一样,直接\(g_x*=2\)
那么我们显然还是可以用线段树来维护\(f,g\),具体考虑到修改\(g\)的时候要集体\(*2\)不好维护(其实开一个乘法标记和两个加法标记即可),我们直接在最外面乘上\(2^t\),然后把访问过的节点都\(\div2\)即可
然后\(g\)的标记怎么下传呢,我们发现可以再开一个懒标记\(tag\)表示这个点有多少次直接修改,然后下传的时候用这个来改\(g\)
具体地就是先把该除的\(2\)除了,然后加上\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots+\frac{1}{2^{tag}}=1-\frac{1}{2^{tag}}\)即可
附上超级简短的CODE
#include<cstdio>
#include<cctype>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=100005,mod=998244353,inv2=499122177;
int n,m,opt,x,y,ipw[N],ret,prod;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline void inc(int& x,CI y)
{
if ((x+=y)>=mod) x-=mod;
}
inline void dec(int& x,CI y)
{
if ((x-=y)<0) x+=mod;
}
inline int sum(CI x,CI y)
{
int t=x+y; return t>=mod?t-mod:t;
}
inline int sub(CI x,CI y)
{
int t=x-y; return t<0?t+mod:t;
}
class Segment_Tree
{
private:
struct segment
{
int f,g,tag;
}node[N<<2];
#define F(x) node[x].f
#define G(x) node[x].g
#define T(x) node[x].tag
inline void pushdown(CI now)
{
if (!T(now)) return; int& add=T(now); T(now<<1)+=add; T(now<<1|1)+=add;
G(now<<1)=sum(1LL*G(now<<1)*ipw[add]%mod,sub(1,ipw[add]));
G(now<<1|1)=sum(1LL*G(now<<1|1)*ipw[add]%mod,sub(1,ipw[add])); add=0;
}
public:
inline void modify(CI beg,CI end,CI now=1,CI l=1,CI r=n)
{
dec(ret,F(now)); F(now)=1LL*F(now)*inv2%mod; G(now)=1LL*G(now)*inv2%mod;
if (beg<=l&&r<=end) inc(F(now),inv2),inc(G(now),inv2);
if (l>end||r<beg) inc(F(now),G(now)),inc(G(now),G(now)); inc(ret,F(now));
if (l>end||r<beg) return; if (beg<=l&&r<=end) return (void)(++T(now));
pushdown(now); int mid=l+r>>1; modify(beg,end,now<<1,l,mid); modify(beg,end,now<<1|1,mid+1,r);
}
#undef F
#undef G
#undef T
}SEG;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (F.read(n),F.read(m),ipw[0]=i=1;i<=m;++i)
ipw[i]=1LL*ipw[i-1]*inv2%mod; for (i=prod=1;i<=m;++i)
{
F.read(opt); if (opt^1) F.write(1LL*ret*prod%mod);
else inc(prod,prod),F.read(x),F.read(y),SEG.modify(x,y);
}
return F.Fend(),0;
}
Luogu P5280 [ZJOI2019]线段树的更多相关文章
- 洛谷P5280 [ZJOI2019]线段树
https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...
- P5280 [ZJOI2019]线段树
题目链接:洛谷 题目描述:[比较复杂,建议看原题] 这道题太神仙了,线段树上做树形dp. 根据树形dp的套路,都是按照转移的不同情况给节点分类.这里每次modify的时候对于节点的影响也不同,所以我们 ...
- 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)
题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...
- 洛谷P5280 [ZJOI2019]线段树 [线段树,DP]
传送门 无限Orz \(\color{black}S\color{red}{ooke}\)-- 思路 显然我们不能按照题意来每次复制一遍,而多半是在一棵线段树上瞎搞. 然后我们可以从\(modify\ ...
- 洛谷P5280 [ZJOI2019]线段树(线段树)
题面 传送门 题解 考场上就这么一道会做的其它连暴力都没打--活该爆炸-- 首先我们得看出问题的本质:有\(m\)个操作,总共\(2^m\)种情况分别对应每个操作是否执行,求这\(2^m\)棵线段树上 ...
- [Luogu5280][ZJOI2019]线段树(线段树+DP)
https://www.luogu.org/blog/Sooke/solution-p5280 首先想到对线段树上每个点分别维护有多少棵线段树在它上有标记(f[]),然后想到对于每个操作,根据转移的不 ...
- [Luogu] 可持久化线段树 1(主席树)
https://www.luogu.org/problemnew/show/P3834 #include<cstdio> #include<iostream> #include ...
- [ZJOI2019]线段树
题目大意 一开始有一棵线段树,然后有一个操作序列,问执行这个操作序列的所有子集时线段树上有标记的节点个数和. 题解 其实我们把它除以\(2^m\)后发现就是有标记节点的期望个数. 然后套路的根据期望的 ...
- Luogu5280 ZJOI2019线段树(线段树)
容易发现相当于求2m种操作序列所得的每种线段树tag数量之和.显然考虑每个点的贡献,也即有多少种方案会使该点上有tag.可以将点分为四类: 1.修改时被经过且有儿子被修改的节点 2.修改时被经过且没有 ...
随机推荐
- Nginx的负载均衡
什么是负载均衡 负载均衡主要通过专门的硬件设备或者通过软件算法实现.通过硬件设备实现的负载均衡效果好.效率高.性能稳定,但是成本比较高.通过软件实现的负载均衡主要依赖于均衡算法的选择和程序的健壮性.均 ...
- Powershell:关于hashtable你想知道的一切
译者语:本篇为一篇译文,详细介绍了在powershell中如何使用hashtable这种数据类型.本文为本人2018年最后一篇博文(哈哈,一年内写没写几篇),也是本人的第一次译文,有不足之处还请指教. ...
- [总结] NOIP 前的考试记录
sb博主又犯sb错误了! 他觉得以往模拟赛因为犯sb错误扔的分足足有1k分了! 于是他想记录一下自己犯的sb错误看看自己到底有多sb! 嗯就从今天开始吧 2018.9.28 1. 二分边界写错.骚什么 ...
- 史上最走心webpack4.0中级教程——配置之外你应该知道的事
<webpack4.0各个击破系列>适合不满足于只会配置webpack但一时间又看不懂源码的中级读者.我没法保证这个系列是最好的,但至少能保证每一篇博文都跟那些Ctrl+C和Ctrl+V的 ...
- DSAPI HTTP监听服务端与客户端_指令版
前面介绍了DSAPI多功能组件编程应用-HTTP监听服务端与客户端的内容,这里介绍一个适用于更高效更快速的基于HTTP监听的服务端.客户端. 在本篇,你将见到前所未有的超简化超傻瓜式的HTTP监听服务 ...
- linux yum配置代理
yum里面可以单独设置代理就是yum源的参数加proxy=“http://ip:PORT”即在/etc/yum.conf中加入下面几句.proxy=http://210.45.72.XX:808pro ...
- C# Redis 过期机制不生效问题
引用: https://ask.csdn.net/questions/358802 根据这里的代码写出监听事件后,事件并没有生效 在比对了多次配置文件后,终于发现了一点蹊跷,在配置中不能有与之相冲的配 ...
- Softmax函数模型介绍
Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用. 我们先来直观看一 ...
- C# 消息队列-MSMQ
MQ是一种消息中间件技术,所以它能够支持多种类型的语言开发,同时也是跨平台的通信机制,也就是说MQ支持将信息转化为XML或者JSon等类型的数据存储到消息队列中,然后可以使用不同的语言来处理消息队列中 ...
- input 图片上传,第二次上传同一张图片失效
<input type="file" onchange="angular.element(this).scope().addPhoto(this,event)&qu ...