Requirements

Software Requirements

Flink runs on all UNIX-like environments, e.g. Linux, Mac OS X, and Cygwin (for Windows) and expects the cluster to consist of one master node and one or more worker nodes. Before you start to setup the system, make sure you have the following software installed on each node:

  • Java 1.8.x or higher,
  • ssh (sshd must be running to use the Flink scripts that manage remote components)

If your cluster does not fulfill these software requirements you will need to install/upgrade it.

Having passwordless SSH and the same directory structure on all your cluster nodes will allow you to use our scripts to control everything.

ssh免密登录:

在源机器执行

ssh-keygen  //一路回车,生成公钥,位置~/.ssh/id_rsa.pub

ssh-copy-id -i ~/.ssh/id_rsa.pub root@目的机器  //将源机器生成的公钥拷贝到目的机器的~/.ssh/authorized_keys

或者 手动将源机器生成的公钥拷贝到目的机器的~/.ssh/authorized_keys。注意:不要有换行

完成!

Back to top

JAVA_HOME Configuration

系统环境配置了JAVA_HOME即可,无需如下操作

Flink requires the JAVA_HOME environment variable to be set on the master and all worker nodes and point to the directory of your Java installation.

You can set this variable in conf/flink-conf.yaml via the env.java.home key.

Back to top

Flink Setup

Go to the downloads page and get the ready-to-run package. Make sure to pick the Flink package matching your Hadoop version. If you don’t plan to use Hadoop, pick any version.

After downloading the latest release, copy the archive to your master node and extract it:

tar xzf flink-*.tgz
cd flink-*

Configuring Flink  (不做任何设置,在单节点上直接运行bin/start-cluster.sh,可在单机启动单个jobmanager和单个taskmanager,方便debug代码)

After having extracted the system files, you need to configure Flink for the cluster by editing conf/flink-conf.yaml.

Set the jobmanager.rpc.address key to point to your master node. You should also define the maximum amount of main memory the JVM is allowed to allocate on each node by setting the jobmanager.heap.mb and taskmanager.heap.mb keys.

These values are given in MB. If some worker nodes have more main memory which you want to allocate to the Flink system you can overwrite the default value by setting the environment variable FLINK_TM_HEAP on those specific nodes.

Finally, you must provide a list of all nodes in your cluster which shall be used as worker nodes. Therefore, similar to the HDFS configuration, edit the file conf/slaves and enter the IP/host name of each worker node. Each worker node will later run a TaskManager.

The following example illustrates the setup with three nodes (with IP addresses from 10.0.0.1 to 10.0.0.3 and hostnames masterworker1worker2) and shows the contents of the configuration files (which need to be accessible at the same path on all machines):

/path/to/flink/conf/flink-conf.yaml
jobmanager.rpc.address: 10.0.0.1
注意:需要在所有需要启动taskmanager的机器进行如上配置

/path/to/flink/conf/slaves

10.0.0.2
10.0.0.3

The Flink directory must be available on every worker under the same path. You can use a shared NFS directory, or copy the entire Flink directory to every worker node.

Please see the configuration page for details and additional configuration options.

In particular,

  • the amount of available memory per JobManager (jobmanager.heap.mb),
  • the amount of available memory per TaskManager (taskmanager.heap.mb),
  • the number of available CPUs per machine (taskmanager.numberOfTaskSlots),
  • the total number of CPUs in the cluster (parallelism.default) and
  • the temporary directories (taskmanager.tmp.dirs)

are very important configuration values.

Back to top

Starting Flink

The following script starts a JobManager on the local node and connects via SSH to all worker nodes listed in the slaves file to start the TaskManager on each node. Now your Flink system is up and running. The JobManager running on the local node will now accept jobs at the configured RPC port.

Assuming that you are on the master node and inside the Flink directory:

bin/start-cluster.sh

To stop Flink, there is also a stop-cluster.sh script.

Back to top

Adding JobManager/TaskManager Instances to a Cluster

You can add both JobManager and TaskManager instances to your running cluster with the bin/jobmanager.sh and bin/taskmanager.shscripts.

Adding a JobManager

bin/jobmanager.sh ((start|start-foreground) cluster)|stop|stop-all

Adding a TaskManager

bin/taskmanager.sh start|start-foreground|stop|stop-all

Make sure to call these scripts on the hosts on which you want to start/stop the respective instance.

flink Standalone Cluster的更多相关文章

  1. flink初识及安装flink standalone集群

    flink architecture 1.可以看出,flink可以运行在本地,也可以类似spark一样on yarn或者standalone模式(与spark standalone也很相似),此外fl ...

  2. Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放

    欢迎转载,转载请注明出处,徽沪一郎. 概要 本文主要讲述在standalone cluster部署模式下,Spark Application在整个运行期间,资源(主要是cpu core和内存)的申请与 ...

  3. Spark Standalone cluster try

    Spark Standalone cluster node*-- stop firewalldsystemctl stop firewalldsystemctl disable firewalld-- ...

  4. flink部署操作-flink standalone集群安装部署

    flink集群安装部署 standalone集群模式 必须依赖 必须的软件 JAVA_HOME配置 flink安装 配置flink 启动flink 添加Jobmanager/taskmanager 实 ...

  5. Spark运行模式_spark自带cluster manager的standalone cluster模式(集群)

    这种运行模式和"Spark自带Cluster Manager的Standalone Client模式(集群)"还是有很大的区别的.使用如下命令执行应用程序(前提是已经启动了spar ...

  6. Flink standalone模式作业执行流程

    宏观流程如下图: client端 生成StreamGraph env.addSource(new SocketTextStreamFunction(...)) .flatMap(new FlatMap ...

  7. 【转帖】两年Flink迁移之路:从standalone到on yarn,处理能力提升五倍

    两年Flink迁移之路:从standalone到on yarn,处理能力提升五倍 https://segmentfault.com/a/1190000020209179 flink 1.7k 次阅读 ...

  8. Apache Flink 的迁移之路,2 年处理效果提升 5 倍

    一.背景与痛点 在 2017 年上半年以前,TalkingData 的 App Analytics 和 Game Analytics 两个产品,流式框架使用的是自研的 td-etl-framework ...

  9. 重磅!解锁Apache Flink读写Apache Hudi新姿势

    感谢阿里云 Blink 团队Danny Chan的投稿及完善Flink与Hudi集成工作. 1. 背景 Apache Hudi 是目前最流行的数据湖解决方案之一,Data Lake Analytics ...

随机推荐

  1. JDK1.8源码(一)——java.util.ArrayList

      ArrayList 定义 ArrayList 是一个用数组实现的集合,支持随机访问,元素有序且可以重复. public class ArrayList<E> extends Abstr ...

  2. asp.net core 系列 12 选项 TOptions

    一.概述 本章讲的选项模式是对Configuration配置的功能扩展. 讲这篇时有个专用名词叫“选项类(TOptions)” .该选项类作用是指:把选项类中的属性与配置来源中的键关联起来.举个例,假 ...

  3. ThreadPoolExecutor系列三——ThreadPoolExecutor 源码解析

    ThreadPoolExecutor 源码解析 本文系作者原创,转载请注明出处:http://www.cnblogs.com/further-further-further/p/7681826.htm ...

  4. REST API设计指导——译自Microsoft REST API Guidelines(四)

    前言 前面我们说了,如果API的设计更规范更合理,在很大程度上能够提高联调的效率,降低沟通成本.那么什么是好的API设计?这里我们不得不提到REST API. 关于REST API的书籍很多,但是完整 ...

  5. springboot情操陶冶-web配置(八)

    本文关注应用的安全方面,涉及校验以及授权方面,以springboot自带的security板块作为讲解的内容 实例 建议用户可直接路由至博主的先前博客spring security整合cas方案.本文 ...

  6. 痞子衡嵌入式:ARM Cortex-M文件那些事(1)- 源文件(.c/.h/.s)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家讲的是嵌入式开发里的source文件. 众所周知,嵌入式开发属于偏底层的开发,主要编程语言是C和汇编.所以本文要讲的source文件主要指的就是 ...

  7. org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.MavenProject, org.apache.maven.archiver.MavenArchiveConfiguration)

    [错误原因:]maven的配置文件不是最新的 [解决办法:]依次点击help ->Install New Software -> add ->https://otto.takari. ...

  8. Redux进阶(Immutable.js)

    更好的阅读体验 更好的阅度体验 Immutable.js Immutable的优势 1. 保证不可变(每次通过Immutable.js操作的对象都会返回一个新的对象) 2. 丰富的API 3. 性能好 ...

  9. 第35章 秘密(secrets) - Identity Server 4 中文文档(v1.0.0)

    在某些情况下,客户端需要使用身份服务器进行身份验证,例如 在令牌端点请求令牌的机密应用程序(也称为客户端) API在内省端点验证引用令牌 为此,您可以将秘密列表分配给客户端或API资源. 秘密解析和验 ...

  10. PHP中private、public、protected的区别详解

    先简单粗俗的描述下:public 表示全局,类内部外部子类都可以访问:private表示私有的,只有本类内部可以使用:protected表示受保护的,只有本类或子类或父类中可以访问: 再啰嗦的解释下: ...