摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是【N X M】

正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿。


首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的。

运行结果:

不难看出,我们构建了这样的一个函数:

所以其求导也很容易看出:

这是对其进行标量自动求导的结果


如果out.backward()中的out是一个向量(或者理解成1xN的矩阵)的话,我们对向量进行自动求导,看看会发生什么?

先构建这样的一个模型(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有两个输出):

模型也很简单,不难看出out求导出来的雅克比应该是:

,因为a1 = 2,a2 = 4,所以上面的矩阵应该是  

运行的结果:

嗯,的确是8和96,但是仔细想一想,和咱们想要的雅克比矩阵的形式也不一样啊。难道是backward自动把0给省略了?

咱们继续试试,这次在上一个模型的基础上进行小修改,如下:

可以看出这个模型的雅克比应该是:

运行一下,看是不是:

等等,什么鬼?正常来说不应该是  [ [ 8 , 2 ] , [ 2 , 96 ] ]么?

我是谁?我再哪?

为什么就给我2个数,而且是  8 + 2 = 10 ,96 + 2 = 98 。难道都是加的 2 ?

想一想,刚才咱们backward中传的参数是 [ [ 1 , 1 ] ],难道安装这个关系对应求和了?

咱们换个参数来试一试,程序中只更改传入的参数为[ [ 1 , 2 ] ]:

运行一下:

嗯,这回可以理解了,我们传入的参数,是对原来模型正常求导出来的雅克比矩阵进行线性操作,可以把我们传进的参数(设为arg)看成一个列向量,那么我们得到的结果就是(注意这里是矩阵乘法,为了好表示我用了*):

( Jacobi * arg )T

在这个题里,我们得到的实际是:

看起来一切完美的解释了,但是就在我刚刚打字的一刻,我意识到官方文档中说k.backward()传入的参数应该和k具有相同的维度,所以如果按上述去解释是解释不通的。

哪里出问题了呢?

仔细看了一下,原来是这样的:在对雅克比矩阵进行线性操作的时候,应该把我们传进的参数(设为arg)看成一个行向量(不是列向量),那么我们得到的结果就是(注意这里是矩阵乘法,为了好表示我用了*):

  ( arg * Jacobi )T

这回我们就解释的通了。

现在我们来输出一下雅克比矩阵吧,为了不引起歧义,我们让雅克比矩阵的每个数值都不一样(一开始分析错了就是因为雅克比矩阵中有相同的数据),所以模型小改动如下:

如果没问题的话咱们的雅克比矩阵应该是 [ [ 8 , 2 ] , [ 4 , 96 ] ]

好了,下面是见证奇迹的时刻了,不要眨眼睛奥,千万不要眨眼睛......

3

2

1

砰............

好了,现在总结一下:因为经过了复杂的神经网络之后,out中每个数值都是由很多输入样本的属性(也就是输入数据)线性或者非线性组合而成的,那么out中的每个数值和输入数据的每个数值都有关联,也就是说【out】中的每个数都可以对【a】中每个数求导,那么我们backward()的参数[k1,k2,k3....kn]的含义就是:

   

也可以理解成每个out分量对an求导时的权重。


现在,如果out是一个矩阵呢?

下面的例子也可以理解为:相当于一个神经网络有两个样本,每个样本有两个属性,神经网络有两个输出.

如果前面的例子理解了,那么这个也很好理解,backward输入的参数k是一个2x1的矩阵,2代表的就是样本数量,就是在前面的基础上,再对每个样本进行加权求和。

结果是:

如果有兴趣,也可以拓展一下多个样本的多分类问题,猜一下k的维度应该是【输入样本的个数 X 分类的个数】

好啦,纠结我好久的pytorch自动求导原理算是彻底搞懂啦~~~

Pytorch中的自动求导函数backward()所需参数含义的更多相关文章

  1. Pytorch中的自动求梯度机制和Variable类

    自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和T ...

  2. 什么是pytorch(2Autograd:自动求导)(翻译)

    Autograd: 自动求导 pyTorch里神经网络能够训练就是靠autograd包.我们来看下这个包,然后我们使用它来训练我们的第一个神经网络. autograd 包提供了对张量的所有运算自动求导 ...

  3. Pytorch Tensor, Variable, 自动求导

    2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...

  4. pytorch中torch.nn构建神经网络的不同层的含义

    主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...

  5. Pytorch Autograd (自动求导机制)

    Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...

  6. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  7. PyTorch官方中文文档:自动求导机制

    自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有 ...

  8. Pytorch学习(一)—— 自动求导机制

    现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...

  9. ARTS-S pytorch中backward函数的gradient参数作用

    导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...

随机推荐

  1. Centos安装php php-fpm 以及 配置nginx

    下载php源码包 http://www.php.net/downloads.php 安装php .tar.bz2 cd php- ./configure --prefix=/usr/local/php ...

  2. springmvc中的类型转换器

    在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...

  3. android glide图片加载框架

    项目地址: https://github.com/bumptech/glide Glide作为安卓开发常用的图片加载库,有许多实用而且强大的功能,那么,今天就来总结一番,这次把比较常见的都写出来,但并 ...

  4. 【转】Android调用Sqlite数据库时自动生成db-journal文件的原因

    数据库为了更好实现数据的安全性,一半都会有一个Log文件方便数据库出现意外时进行恢复操作等.Sqlite虽然是一个单文件数据库,但麻雀虽小五脏俱全,它也会有相应的安全机制存在 这个journal文件便 ...

  5. linux 网卡的混杂模式的取消

    1.Linux下网卡常用的几种模式说明: 广播方式:该模式下的网卡能够接收网络中的广播信息. 组播方式:设置在该模式下的网卡能够接收组播数据. 直接方式:在这种模式下,只有目的网卡才能接收该数据. 混 ...

  6. python字符串replace失效问题

    python字符串replace替换无效 背景 今天想把一个列表中符合条件的元素中 替换部分字符串, 发现怎么替换,改元素还是没有改变,本以为是内存引用的问题后来发现并不然. 经查阅解决 在Pytho ...

  7. matlab读取csv文件数据并绘图

    circle.m(画二维圆的函数) %该函数是画二维圆圈,输入圆心坐标和半径%rectangle()函数参数‘linewidth’修饰曲线的宽度%'edgecolor','r',edgecolor表示 ...

  8. C++笔记--std::相关

    std::packaged_task https://www.cnblogs.com/haippy/p/3279565.html https://en.cppreference.com/w/cpp/t ...

  9. Elasticsearch通关教程(一): 基础入门

    简介 Elasticsearch是一个高度可扩展的.开源的.基于 Lucene 的全文搜索和分析引擎.它允许您快速,近实时地存储,搜索和分析大量数据,并支持多租户. Elasticsearch也使用J ...

  10. 追逐心目中的那个Ta

    申明:全篇皆为作者臆想,浪漫主义代表派作品,若有雷同,纯属巧合 人生最难过的不就是在一无所有的年纪里遇到了最想呵护一生的人,而在拥有一切的时候却失去了不顾一切的心. 长夜漫漫,本是相思人,偏听多情曲, ...