1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$

2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{2_1_2_dl} 为 $$\bee\label{2_1_2_Euler} \cfrac{\rd{\bf u}}{\rd t}+\cfrac{1}{\rho}\n p={\bf F}, \eee$$ 其中 $$\bex \cfrac{\rd }{\rd t}=\cfrac{\p}{\p t}+{\bf u}\cdot\n.  \eex$$ 称 \eqref{2_1_2_Euler} 为 Euler 方程.

3.  能量守恒定律: $$\bee\label{2_1_2_nl} \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\Div\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }{\bf u}}=\rho {\bf F}\cdot{\bf u}.  \eee$$

(1)   \eqref{2_1_2_nl} 可化简为 $$\bex \cfrac{\rd S}{\rd t}=0, \eex$$ 其中 $S$ 为熵, 由 $$\bex \rd S=\cfrac{1}{T}(\rd e+p\rd \tau) \eex$$ 决定.

(2)   对多方气体, $$\bex p=A(S)\rho^\gamma, \quad A(S)=(\gamma-1)e^\frac{S-S_0}{c_V}, \eex$$ 其中 $\gamma>1$ 为绝热指数.

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. Python开发【内置模块篇】datetime

    获取当前日期和时间 >>> from datetime import datetime >>> now = datetime.now() >>> ...

  2. String输出结果to thi

    http://blog.csdn.net/itmyhome1990/article/details/9132929

  3. .net 获取远程访问的ip

    这两天一直做获取远程访问的ip和自己的ip相关的问题. 在解决获取ip相关问题的时候,主要使用了上下文对象,httpcontext对象.原理很简单,内部有两大对象,request和response.里 ...

  4. vim之快速查找功能

    vim有强大的字符串查找功能. 我们通常在vim下要查找字符串的时候, 都是输入 / 或者 ?  加 需要查找的字符串来进行搜索,比如想搜索 super 这个单词, 可以输入  /super  或者 ...

  5. 【js】this问题

    var obj = { a: 10, b: () => { console.log(this.a); // undefined console.log(this); // Window {pos ...

  6. VSCode 必装的 10 个高效开发插件

    本文介绍了目前前端开发最受欢迎的开发工具 VSCode 必装的 10 个开发插件,用于大大提高软件开发的效率. VSCode 的基本使用可以参考我的原创视频教程「VSCode 高效开发必装插件」. V ...

  7. openstack基础:网络

    Neutron 功能 Neutron 为整个 OpenStack 环境提供网络支持,包括二层交换,三层路由,负载均衡,防火墙和 *** 等.Neutron 提供了一个灵活的框架,通过配置,无论是开源还 ...

  8. 阿里云 轻量应用服务器(LAMP) 使用日志记录

    phpStudy(PHP运行环境一键安装包) https://www.jb51.net/softs/182860.html 0:PHP开发工具 https://netbeans.org/downloa ...

  9. JMeter配置好环境变量后无法启动---翻车笔记

    双击jmeter.bat出现下图情况 手欠了win7中配置 path无意中多删了变量 解决方法:在计算机-属性-高级系统设置-环境变量Path中添加 %SystemRoot%/system32;%Sy ...

  10. nfs 权限问题

    nfs-server 上面的共享文件的权限修改后 到nfs-client 上面挂载后的权限不能刷新的问题 修改/etc/idmap.conf Domain = local.domain.edu #打开 ...