2561: 最小生成树(题解)

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1628  Solved: 786

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2561

Description

 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?

Input

第一行包含用空格隔开的两个整数,分别为N和M;
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。

Output

输出一行一个整数表示最少需要删掉的边的数量。

Sample Input

3 2
3 2 1
1 2 3
1 2 2

Sample Output

1

HINT

对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;

对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;

对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。

 
【解析】
我们首先回忆一下kruskal算法求MST。。。
然后反过来想:如果一条边在MST上,那么权值小于它的边肯定做不出一个生成树。
之后就简单了:对于在最小生成树上,肯定是要在权值小于它的边中删掉一些使得剩下的不能做成一个生成树,也就是使要加入的边的两个端点在图中不连通。
我们想到了最小割!
要加入的边的两个端点分别是源与汇,然后每条小于其的边(注意:这是在MST上,在最大生成树上也同理,即处理大于它的边)的两个端点在图中连一条权值为1的无向边。然后最小割即可。
最终将在最小生成树与最大生成树上的处理的最小割的值相加即为所求。
我的程序452 MS,目前进排行榜前15啦~
 
ISAP~
#include<iostream>
#include<fstream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<deque>
#include<utility>
#include<map>
#include<set>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<sstream>
#include<cstring>
#include<bitset>
#include<stack>
using namespace std; int n,m,s,t,cnt,x,y,z,ansx,l;
struct sdt
{
int cap,flow,u,v;
}e[400005];
struct bdq
{
int a,b,c;
}edge[200005];
int nxt[400005],fir[20005],d[20005],par[20005],num[20005],cur[20005];
bool vis[20005]; int read()
{
int x=0;char c=getchar();
while(c<48||c>57)c=getchar();
while(c>47&&c<58)x*=10,x+=c-48,c=getchar();
return x;
} void bfs()
{
memset(vis,0,sizeof(vis));
memset(d,0,sizeof(d));
queue<int>q;
d[t]=0;
vis[t]=1;
q.push(t);
while(!q.empty())
{
int k=q.front();
q.pop();
for(int i=fir[k];i;i=nxt[i])
{
if(!vis[e[i].v])
{
vis[e[i].v]=1;
d[e[i].v]=d[k]+1;
q.push(e[i].v);
}
}
}
} int agument()
{
int p=t;
int ans=2147483647;
while(p!=s)
{
ans=min(ans,e[par[p]].cap-e[par[p]].flow);
p=e[par[p]].u;
}
p=t;
while(p!=s)
{
e[par[p]].flow+=ans;
e[par[p]^1].flow-=ans;
p=e[par[p]].u;
}
return ans;
} int isap()
{
memset(num,0,sizeof(num));
int flow=0;
for(int i=1;i<=n;i++)
{
num[d[i]]++;
cur[i]=fir[i];
}
int p=s;
while(d[s]<n)
{
if(p==t)
{
flow+=agument();
p=s;
}
bool ok=0;
for(int i=cur[p];i;i=nxt[i])
{
if(e[i].cap>e[i].flow && d[p]==d[e[i].v]+1)
{
ok=1;
par[e[i].v]=i;
cur[p]=i;
p=e[i].v;
break;
}
}
if(!ok)
{
int mn=n-1;
for(int i=fir[p];i;i=nxt[i])
{
if(e[i].cap>e[i].flow)mn=min(mn,d[e[i].v]);
}
if(--num[d[p]]==0)break;
num[d[p]=mn+1]++;
cur[p]=fir[p];
if(p!=s)p=e[par[p]].u;
}
}
return flow;
} int main()
{
memset(nxt,0,sizeof(nxt));
memset(fir,0,sizeof(fir));
n=read();m=read();
cnt=1;
for(int i=1;i<=m;i++)
{
edge[i].a=read();edge[i].b=read();edge[i].c=read();
}
s=read();t=read();l=read();
for(int i=1;i<=m;i++)
{
if(edge[i].c<l)
{
x=edge[i].a;
y=edge[i].b;
e[++cnt].u=x;e[cnt].v=y;e[cnt].cap=1;e[cnt].flow=0;
nxt[cnt]=fir[x];fir[x]=cnt;
e[++cnt].u=y;e[cnt].v=x;e[cnt].cap=1;e[cnt].flow=0;
nxt[cnt]=fir[y];fir[y]=cnt;
}
}
bfs();
ansx+=isap();
cnt=1;
memset(nxt,0,sizeof(nxt));
memset(fir,0,sizeof(fir));
memset(e,0,sizeof(e));
for(int i=1;i<=m;i++)
{
if(edge[i].c>l)
{
x=edge[i].a;
y=edge[i].b;
e[++cnt].u=x;e[cnt].v=y;e[cnt].cap=1;e[cnt].flow=0;
nxt[cnt]=fir[x];fir[x]=cnt;
e[++cnt].u=y;e[cnt].v=x;e[cnt].cap=1;e[cnt].flow=0;
nxt[cnt]=fir[y];fir[y]=cnt;
}
}
bfs();
ansx+=isap();
printf("%d\n",ansx);
return 0;
}

  

BZOJ-2561-最小生成树 题解(最小割)的更多相关文章

  1. BZOJ 2561 最小生成树 | 网络流 最小割

    链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...

  2. bzoj 2561: 最小生成树【最小割】

    看错题了以为多组询问吓得不行-- 其实还挺好想的,就是数据范围一点都不网络流.把U作为s,V作为t,以最小生成树为例,(U,V,L)要在最小生成树上,就要求所有边权比L小的边不能连通(U,V)所在的联 ...

  3. BZOJ 2561: 最小生成树【最小割/最大流】

    Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v), ...

  4. BZOJ_2561_最小生成树_最小割

    BZOJ_2561_最小生成树_最小割 题意: 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条 ...

  5. BZOJ 2561: 最小生成树(最小割)

    U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...

  6. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  7. BZOJ 2521: [Shoi2010]最小生成树(最小割)

    题意 对于某一条无向图中的指定边 \((a, b)\) , 求出至少需要多少次操作.可以保证 \((a, b)\) 边在这个无向图的最小生成树中. 一次操作指: 先选择一条图中的边 \((u, v)\ ...

  8. 【bzoj2521】[Shoi2010]最小生成树 网络流最小割

    题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...

  9. 【bzoj2561】最小生成树 网络流最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

  10. BZOJ2561 最小生成树 【最小割】

    题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...

随机推荐

  1. (转) Qt 出现“undefined reference to `vtable for”原因总结

    由于Qt本身实现的机制所限,我们在使用Qt制作某些软件程序的时候,会遇到各种各样这样那样的问题,而且很多是很难,或者根本找不到原因的,即使解决了问题,如果有人问你为什么,你只能回答--不知道. 今天我 ...

  2. 如何数据库表数据导出到excel中

    1.首先须要有一个NPOI 2.接下来上代码 private void button1_Click(object sender, EventArgs e) { //1.通过Ado.net读取数据 st ...

  3. node.js xtemplate的使用实例

    工程下安装XTemplate并使用它的方法实例说明: 1.安装xtpl npm install xtpl xtemplate --save 2.在views目录添加test.xtpl文件,其内容为 t ...

  4. UITabBarController 升级定制

    UITabBarController 定制 特点 用法 1.准备工作: 加入你的相关图片,放入了Assets.xcassets; 导入Categroy文件夹(这个里面的文件,在这里不详细说明了,有疑问 ...

  5. [Android Studio]SQLScout插件安装破解

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/5972138.html [Android Studio]SQLS ...

  6. 在C语言中利用PCRE实现正则表达式

    1. PCRE简介 2. 正则表达式定义 3. PCRE正则表达式的定义 4. PCRE的函数简介 5. 使用PCRE在C语言中实现正则表达式的解析 6. PCRE函数在C语言中的使用小例子 1. P ...

  7. 了解JavaScript 面向对象基础 & 原型与对象

    面向对象语言中的对象 老是能听到什么基于对象, 面向对象. 什么是对象, 如果有面向对象基础的人可以无视了, 下面举个简单的例子给大家讲讲面向对象中, 对象的定义, 这个是比较通用的, 不过对于JS来 ...

  8. 5、项目间的沟通协调 - PMO项目管理办公室

    沟通是人类所具备的优良而有一定技巧的一种方式.但是,沟通也是PMO项目管理办公室中所有项目组必须建立起来的能力,也是PMO项目管理办公室日常所需要进行的一项工作内容. 一.项目间的沟通: PMO项目管 ...

  9. Oracle 数据库中对记录进行分页处理——学习笔记

    学习到 oracle 的视图的时候,了解到对 Oracle 中数据的记录进行分页处理和 Mysql 提供的 limit 来进行分页处理大有不同,limit 是 mysql 中特有的关键字. 那么在 o ...

  10. ubuntu声音系统

    查看声卡:cat /proc/asound/cards 显示所有ALSA的组件:cat /proc/asound/device aplay -l ubuntu使用pulseaudio,是ALSA(先进 ...