【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
题面
题解
这不是送分题吗。。。
转异或前缀和,构建可持久化\(Trie\)。
然后拿一个堆维护每次的最大值,每次如果取了一个数,就把它再在\(Trie\)树上查一次新建一个元素丢回堆里就行了。
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
#define ll long long
#define MAX 500500
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Node{int ch[2],v;}t[MAX*80];
int tot,rt[MAX];
void Modify(int &x,int d,ll val,int w)
{
++tot;t[tot]=t[x];x=tot;t[x].v+=w;if(d==-1)return;
if((val>>d)&1)Modify(t[x].ch[1],d-1,val,w);
else Modify(t[x].ch[0],d-1,val,w);
}
ll Query(int x,int d,ll val)
{
if(d==-1)return 0;int c=(val>>d)&1;
if(t[t[x].ch[c^1]].v)return (1ll<<d)+Query(t[x].ch[c^1],d-1,val);
else return Query(t[x].ch[c],d-1,val);
}
struct Data{ll w;int x;};
bool operator<(Data a,Data b){return a.w<b.w;}
priority_queue<Data> Q;
ll a[MAX],ans;int n,K;
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=a[i-1]^read();
for(int i=1;i<=n;++i)rt[i]=rt[i-1],Modify(rt[i],32,a[i-1],1);
for(int i=1;i<=n;++i)Q.push((Data){Query(rt[i],32,a[i]),i});
while(K--)
{
Data u=Q.top();Q.pop();
ans+=u.w;Modify(rt[u.x],32,u.w^a[u.x],-1);
Q.push((Data){Query(rt[u.x],32,a[u.x]),u.x});
}
printf("%lld\n",ans);
return 0;
}
【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)的更多相关文章
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
- 【简】题解 P5283 [十二省联考2019]异或粽子
传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...
- Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】
联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...
- 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)
点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...
- Luogu P5283 [十二省联考2019]异或粽子
感觉不是很难的一题,想了0.5h左右(思路歪了,不过想了一个大常数的两只\(\log\)做法233) 然后码+调了1h,除了一个SB的数组开小外基本上也没什么坑点 先讲一个先想到的方法,我们对于这种问 ...
- [十二省联考2019]异或粽子(堆+可持久化Trie)
前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...
- Luogu5283 十二省联考2019异或粽子(trie/可持久化trie+堆)
做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两 ...
- 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)
LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...
随机推荐
- 如何在WIN10内置Ubuntu中有多个terminal
使用的是tmux来实现在WIN10的内置Ubuntu实现多终端窗口 先安装tmux:sudo apt-get install tumx 启动tmux,tmux 然后就可以在tmux中实现多窗口.其操作 ...
- 06-Nodejs介绍
06-Nodejs介绍 打开Nodejs英文网:https://nodejs.org/en/ 中文网:http://nodejs.cn/ 我们会发现这样一句话: 翻译成中文如下: Node.js 是一 ...
- MySQL InnoDB下关于MVCC的一个问题的分析
这个是网友++C++在群里问的一个关于MySQL的问题,本篇文章实验测试环境为MySQL 5.6.20,事务隔离级别为REPEATABLE-READ ,在演示问题前,我们先准备测试环境.准备一个测 ...
- iOS 开发 nonatomic 和 atomic
nonatomic : 非原子属性 atomic : 原子属性 如果不写关键字 那么默认就是 原子属性 - 多线程写入属性时,保证同一时间只有一个线程能够执行写入操作 - 单(线程)写多(线程 ...
- 【Teradata】变更viewpoint web登录地址
1.使用root用户登录原viewpoint地址 ssh root@192.168.253.133 2.查看使用网卡(示例中为eth0) route Kernel IP routing table D ...
- day 17-18 常用模块
time:时间 '''时间戳(timestamp):time.time()延迟线程的运行:time.sleep(secs)(指定时间戳下的)当前时区时间:time.localtime([secs])( ...
- WPF防止界面卡死并显示加载中效果
原文:WPF防止界面卡死并显示加载中效果 网上貌似没有完整的WPF正在加载的例子,所以自己写了一个,希望能帮到有需要的同学 前台: <Window x:Class="WpfApplic ...
- vue 中使用jquery
vue-cli搭建的项目 第一种方式:npm 引包的方式 1.安装jquery npm install jquery --save 2.webpack配置 在项目根目录下的build目录下找到webp ...
- Java 200+ 面试题补充② Netty 模块
让我们每天都能看到自己的进步.老王带你打造最全的 Java 面试清单,认真把一件事做到最好. 本文是前文<Java 最常见的 200+ 面试题>的第二个补充模块,第一模块为:<Jav ...
- PostgreSql扩展Sql-动态加载共享库(C函数)
基于 psql (PostgreSQL) 10.4 pg_language表定义了函数实现所使用的语言.主要支持了C语言和SQL语句.一些可选的语言包括pl/pgsql.tcl和perl. ligan ...