sgu-508 Black-white balls 概率-贝叶斯公式
题意:有n个球,其中有0、1、2...n个黑球的概率是相等的,现在从中取出L个球,p个黑球q个白球。现在问猜一个黑球的区间,使得落在这个区间的概率大于给定的一个数值。
详见代码:
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std; int n, p, q, pri;
/*
n个球,取出p+q个球,其中黑球p个,白球q个,要求的概率最低值为p
设n个球中有k个黑球的事件为Ak ,设取出p+q个球中有p个黑球为事件B
题目所有概率为sum{p(Ak|B)}>=pri的k的取值区间
p(Ak|B)不好求解,通过贝叶斯公式p(Ak|B) = p(B|Ak)*p(Ak)/p(B)其中
p(B|Ak) = C(p, k) * C(q, n-k) / C(p+q, n);
p(B) = sum( p(B|Ak) * p(Ak) ) k = 0...n;
由于有多少个黑球是等概率的,因此p(Ak)可以提出来约掉
p(Ak|B) = p(B|Ak) / sum( p(B|Ak) );
p(Ak|B) = (C(p, k) * C(q, n-k)) / sum( (C(p, t) * C(q, n-t)) ) 其中t的取值
为枚举的区间[0, n]
上式能够用来求出某个k值的概率值,由于需要枚举一个区间,那么将
这个区间的所有概率相加即可
*/ const double eps = 1e-;
typedef long long LL;
LL tot, seq[];
LL c[][]; int sign(double x) {
return x < -eps ? - : x > eps;
} void init() { // init用来计算
c[][] = ;
for (int i = ; i <= ; ++i) {
c[][i] = ;
for (int j = ; j <= i; ++j) {
c[j][i] = c[j-][i-] + c[j][i-];
}
}
} bool check(int a, int b) {
LL x = ;
for (int i = a; i <= b; ++i) {
x += c[p][i] * c[q][n-i];
}
return sign(100.0 * x / tot - pri) >= ;
} void gao() {
tot = ;
for (int i = ; i <= n; ++i) {
tot += c[p][i] * c[q][n-i];
}
int rl, rr, len = ;
for (int i = ; i <= n; ++i) { // 枚举区间
for (int j = i; j <= n; ++j) {
if (j-i+ >= len) continue;
if (check(i, j)) {
rl = i, rr = j, len = j-i+;
}
}
}
printf("%d %d\n", rl, rr);
} int main() {
init();
while (scanf("%d %d %d %d", &n, &p, &q, &pri) != EOF) {
gao();
}
return ;
}
sgu-508 Black-white balls 概率-贝叶斯公式的更多相关文章
- [HackerRank]Choosing White Balls
[HackerRank]Choosing White Balls 题目大意: 有\(n(n\le30)\)个球排成一行,每个球的颜色为黑或白. 执行\(k\)次操作,第\(i\)次操作形式如下: 从\ ...
- SGU 183. Painting the balls( dp )
dp..dp(i, j)表示画两个点为i-j, i的最优答案. dp(i, j) = min{ dp(i-j, k) } + cost[i] (1≤k≤M-j) 令f(i, j) = min{dp(i ...
- sgu 183. Painting the balls 动态规划 难度:3
183. Painting the balls time limit per test: 0.25 sec.memory limit per test: 4096 KB input: standard ...
- SGU 422 Fast Typing(概率DP)
题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...
- SGU 183 Painting the balls (优化的动态规划)
题意:给n个白球,选其中一些涂为黑色,且给了涂第i个球的花费为ci,要求每m个连续的球中至少有两个黑球,问最小花费是多少? 容易想到一个方程dp[i][j]=min{dp[k][i]}+c[j] dp ...
- SGU 246. Black & White(数论)
题意: 有2*n-1个黑色和白色的珠子组成的环形项链,求至少需要多少颗黑色珠子才能使任意排列的项链中都存在两个黑珠间有n个珠子. (2*n-1<=2^31-1); Solution: 先分析n= ...
- SGU 183.Painting the balls
时间限制:0.25s 空间限制:4M 题意: 在n(n<=10000)个球中,给若干个球涂色,每个球涂色的代价为Ci,使得任意连续m(m<=100)个球中有至少两个球被涂了色. Solu ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- HDU 5194 DZY Loves Balls
DZY Loves Balls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
随机推荐
- flex 加载arcgis 的地图json
var fs:FeatureSet=FeatureSet.fromJSON(JSONUtil.decode(e.result.toString())); for each(var gra:Graphi ...
- ojdbc5.jar
ojdbc5.jar:http://files.cnblogs.com/files/xiluhua/ojdbc5.rar
- PHP array_column() 函数
定义和用法 array_column() 返回输入数组中某个单一列的值. array_column(array,column_key,index_key); 参数 描述 array 必需.规定要使用的 ...
- HDU 3966:Aragorn's Story(树链剖分)
http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意:有n个点n-1条边,每个点有一个权值,有两种操作:询问一个点上权值是多少和修改u到v这条链上的权值. ...
- 阿里云ECS主机多个网站配置,是有先后顺序的
注意:阿里云ECS主机多个网站配置,是有先后顺序的: 进入路径:/alidata/server/httpd-2.4.2/conf/vhosts/ 注意这个2.4.2是自己的版本不一样,但是找到 se ...
- C++ Template Operator
#include <iostream> #include <string> #include <deque> #include <stdexcept> ...
- 【转】MySQL外键约束On Delete、On Update各取值的含义
转载地址:http://hi.baidu.com/jxqlovejava/item/3d2cc5b5d689917c244b0920 先看On Delete属性,可能取值如上图为:No Actio ...
- 在repeart中获取行数据
ItemCreated(){ if (e.Item.DataItem != null) { string examTypeId = ((DataRowView)e.Item.DataItem).Row ...
- Behavior Designer中Wait节点的坑
某一组行为放在并行节点下,并且包含Wait节点动作.当等待时间不达到时它会返回Runing 造成整个行为树阻塞 应该考虑写一个CD时间装饰器来解决此类问题,当CD时间未到返回Failure
- jar 文件
使用类库中的类: 1.当前应用程序所在目录中没有包名的类,直接用. 2.java库. import语句导入. 3.当前目录的子孙目录有报名的类,set classpath,之前有写. 4.扩展ext文 ...