二叉查找树通俗说就是左孩子比父亲小,右孩子比父亲大。构造这么一个树,树嘛,递归即可。

  例如一棵树后序遍历是这样(下图的树):2 9 8 16 15 10 25 38 45 42 30 20。最后的20肯定是树根,这里要抓住一个规律:20是树根,那么2 9 8 16 15 10都是左子树,25 38 42 45 30在右子树,因为左边都小于根、右边都大于根嘛。然后递归即可。

  下面是树的样子和代码和src.txt(后序遍历的结果)以及运行结果:

 #include <iostream>
#include <vector>
#include <fstream> using std::cin;
using std::cout;
using std::endl;
using std::vector; #define MY_DEBUG struct Node
{
int data;
Node* pLC;
Node* pRC;
}; Node* creatBSTree(vector<int>& arr)
{
//数组里面没有元素
if (!arr.size())
return nullptr; Node* pNode = new Node;
int thisData = arr.back();
pNode->data = thisData; //只有一个元素就不要折腾了,它就是叶子节点,它没有左右孩子
if ( == arr.size())
{
pNode->pLC = pNode->pRC = nullptr;
return pNode;
} //下面找出左半边
vector<int> arrLeft;
for (int i = ; i < arr.size() - ; i++)
{
if (arr[i] < thisData)
arrLeft.push_back(arr[i]);
else
break;
} //下面找出右半边
vector<int> arrRight;
for (int i = arrLeft.size(); i < arr.size() - ; i++)
arrRight.push_back(arr[i]); #ifdef MY_DEBUG
for (int i = ; i < arrLeft.size(); i++)
cout << arrLeft[i] << " ";
cout << endl; for (int i = ; i < arrRight.size(); i++)
cout << arrRight[i] << " ";
cout << endl << endl;
#endif //递归处理左右孩子。arrLeft和arrRight可能为空,不要紧,在函数的开头处理了
pNode->pLC = creatBSTree(arrLeft);
pNode->pRC = creatBSTree(arrRight); return pNode;
} //中序遍历
void show(Node* pNode)
{
if (!pNode)
return; show(pNode->pLC);
cout << pNode->data << " ";
show(pNode->pRC);
} int main(void)
{
vector<int> arr;
std::ifstream fin("src.txt"); int temp;
while (fin >> temp)
arr.push_back(temp); Node* pHead = creatBSTree(arr);
show(pHead);
cout << endl;
cin.get();
}
           

  由其他的遍历方式得到树的道理类似。




题目:

  输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。

分析:

  这不是很简单了嘛,由最后的根把输入分成三份,第一份是左孩子,第二份是右孩子,最后是树根。7、4、6、5就不能构成了,因为5是根,那么7,4,6都是右子树里面的,但是里面有小于5的4,所以不行。递归即可。




题目:

  输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。

  例如如果树如上图,那么得到的链表是 2=8=9=……=42=45。

分析:

  树嘛,递归就是啦。

  如上树,先递归处理左子树(根为10的树),处理完左子树就成了一个链表了,并要能够返回左子树的最大节点16;然后递归处理右子树(根为30的树),处理完右子树也成了一个有序链表,并返回右子树的最小节点25,然后把16、20、25串起来,不就是链表了嘛?

  这里要注意一点:在处理根为20的树时,这是不是要递归处理根为10的左子树嘛,那么这个左子树怎么知道它要返回16节点呢?同样对于20的右子树,它怎么知道返回25以和20串起来呢?所以在处理子树的时候,要传给它一个标志,表明它是父亲的左子树还是右子树。我在这里纠结好久……

代码:

 #include <iostream>
#include <set>
#include <fstream>
#include <queue> using std::cin;
using std::cout;
using std::endl;
using std::set;
using std::vector; struct Node
{
int data;
Node* pLC;
Node* pRC;
}; Node* creatBSTree(vector<int>& arr)
{
//数组里面没有元素
if (!arr.size())
return nullptr; Node* pNode = new Node;
int thisData = arr.back();
pNode->data = thisData; //只有一个元素就不要折腾了,它就是叶子节点,它没有左右孩子
if ( == arr.size())
{
pNode->pLC = pNode->pRC = nullptr;
return pNode;
} //下面找出左半边
vector<int> arrLeft;
for (int i = ; i < arr.size() - ; i++)
{
if (arr[i] < thisData)
arrLeft.push_back(arr[i]);
else
break;
} //下面找出右半边
vector<int> arrRight;
for (int i = arrLeft.size(); i < arr.size() - ; i++)
arrRight.push_back(arr[i]); #ifdef MY_DEBUG
for (int i = ; i < arrLeft.size(); i++)
cout << arrLeft[i] << " ";
cout << endl; for (int i = ; i < arrRight.size(); i++)
cout << arrRight[i] << " ";
cout << endl << endl;
#endif //递归处理左右孩子。arrLeft和arrRight可能为空,不要紧,在函数的开头处理了
pNode->pLC = creatBSTree(arrLeft);
pNode->pRC = creatBSTree(arrRight); return pNode;
} //中序遍历
void show(Node* pNode)
{
if (!pNode)
return; show(pNode->pLC);
cout << pNode->data << " ";
show(pNode->pRC);
} //这个函数多传了一个参数 asLeft,表明树根是树根的左子树还是右子树
//因为如果是左子树的话,那么要返回左子树最大节点,右子树要返回最小节点
//不要这个标志的话 pNode 不知道指向的树到底是父亲的左子树还是右子树
Node* letStraight(Node* pNode, bool asLeft)
{
//如果是空树或者只是一个叶子节点,返回自身
if (!pNode || (!pNode->pLC && !pNode->pRC))
return pNode; //递归处理左右子树
Node* pLMax = nullptr;
if (pNode->pLC)
pLMax = letStraight(pNode->pLC, true); Node* pRMin = nullptr;
if (pNode->pRC)
pRMin = letStraight(pNode->pRC, false); //连接左子树、右子树、树根
if (pLMax)
{
pNode->pLC = pLMax;
pLMax->pRC = pNode;
}
if (pRMin)
{
pNode->pRC = pRMin;
pRMin->pLC = pNode;
} //返回值处理,注意 asLeft 表明这棵树是它父亲的左子树还是右子树,所以它要重新找到合适的返回节点
// pNode 的左孩子最大或右孩子最小并不是它要返回的值,它要返回的还是要看这整棵树,而不是单单看左右孩子
Node* pRetutnNode = pNode;
if (asLeft)
{
while (pRetutnNode->pRC)
pRetutnNode = pRetutnNode->pRC;
}
else
{
while (pRetutnNode->pLC)
pRetutnNode = pRetutnNode->pLC;
}
return pRetutnNode;
} int main(void)
{
vector<int> arr;
std::ifstream fin("src.txt"); int temp;
while (fin >> temp)
arr.push_back(temp); Node* pHead = creatBSTree(arr);
show(pHead);
cout << endl; //顺序链表化并返回第一个节点
pHead = letStraight(pHead, false);
while (pHead)
{
cout << pHead->data << " ";
pHead = pHead->pRC;
}
cout << endl; cin.get();
}

结果:

由后序遍历结果构造二叉查找树 && 二叉查找树链表化的更多相关文章

  1. lintcode: 中序遍历和后序遍历树构造二叉树

    题目 中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: 2 /  \ 1    3 注意 你可 ...

  2. 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...

  3. LintCode-72.中序遍历和后序遍历树构造二叉树

    中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 注意事项 你可以假设树中不存在相同数值的节点 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: ...

  4. LeetCode106. 从中序与后序遍历序列构造二叉树

    106. 从中序与后序遍历序列构造二叉树 描述 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 示例 例如,给出 中序遍历 inorder = [9,3,15,20 ...

  5. Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树

    Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树 Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序 ...

  6. Java实现 LeetCode 106 从中序与后序遍历序列构造二叉树

    106. 从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序 ...

  7. [Swift]LeetCode106. 从中序与后序遍历序列构造二叉树 | Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. LeetCode(106):从中序与后序遍历序列构造二叉树

    Medium! 题目描述: 根据一棵树的中序遍历与后序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 posto ...

  9. [LeetCode系列] 从中序遍历和后序遍历序列构造二叉树(迭代解法)

    给定中序遍历inorder和后序遍历postorder, 请构造出二叉树. 算法思路: 设后序遍历为po, 中序遍历为io. 首先取出po的最后一个节点作为根节点, 同时将这个节点入stn栈; 随后比 ...

随机推荐

  1. c语言-枚举

    自定义枚举数据类型:一般在函数返回值调用过程中,被调用函数具体实现中可以直接return 枚举列表中的常量值而不用定义具体的枚举数据,调用方则需用枚举具体的数据变量来接收返回结果,而不能用#defin ...

  2. 常见数组&字符串API及其应用场景总结

    数组API: String(arr):将arr中每个元素转化为字符串,逗号连接     场景:用于鉴别数据有没有修改等. ps:String是万能的   toString 只能转换除null和unde ...

  3. 使用JS对form的内容验证失败后阻止提交 &&js校验表单后提交表单的三种方法总结

    1.form的两个事件 submit,提交表单,如果直接调用该函数,则直接提交表单 onSubmit,提交按钮点击时先触发,然后触发submit事件.如果不加控制的话,默认返回true,因此表单总能提 ...

  4. 跨浏览器复制神器 ZeroClipboard 2.x快速入门详解

    有些时候,我们希望让用户在网页上完成某个操作就能自动将指定的内容复制到用户计算机的剪贴板中.但是出于安全原因,大多数现代浏览器都未提供通用的剪贴板复制接口(或即便有,也默认被禁用).只有IE浏览器可以 ...

  5. CQL操作

    http://docs.datastax.com/en/cql/3.1/pdf/cql31.pdf CQL是Cassandra Query Language的缩写,目前作为Cassandra默认并且主 ...

  6. VVDocumenter-Xcode 规范注释生成器 插件之安装调试适应新版本

    1.下载地址: 很多时候,为了快速开发,很多的技术文档都是能省则省,这个时候注释就变得异常重要,再配合Doxygen这种注释自动生成文档的,就完美了.但是每次都要手动输入规范化的注释,着实也麻烦,但有 ...

  7. 【收藏用】--切勿转载Java处理XML的三种主流技术及介绍

    原帖地址 : http://www.ibm.com/developerworks/cn/xml/dm-1208gub/ XML (eXtensible Markup Language) 意为可扩展标记 ...

  8. [AIR] 利用SnapShot.exe实现QQ截屏功能

    主类(可作文档类): package { import flash.display.Bitmap; import flash.display.Sprite; import flash.events.E ...

  9. JAVA中抽象类的一些总结

    抽象类和普通类一样,有构造函数.抽象类中有一些属性,可以利用构造方法对属性进行初始化.子类对象实例化的时候先执行抽象类的构造,再执行子类构造. 抽象类不能用final声明.因为抽象类必须有子类继承,所 ...

  10. abap case when 例子

    DATA: gv_1 TYPE c. DATA: gv_2 TYPE i. gv_2 = 60. IF gv_2 >= 0 AND gv_2 < 60 . gv_1 = 'A'. ELSE ...