支持向量机之Hinge Loss 解释
Hinge Loss 解释
SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$ 损失,
\[L(Y,P(Y|X)) = - \log P(Y|X)\]
从二项分布的角度来考虑 Logistic 回归:
\begin{aligned}
P(Y=1|X) &= \frac{1}{1 + e^{- \theta x}}\\
P(Y=0|X) &= 1- P(Y=1|X)
\end{aligned}
这里另 $z = \theta^Tx$ , $\delta$ 为 sigmod 映射,则:
\[E(z) = - \log (\delta(z)) \]
$E(z)$ 的图形如下图的红色曲线,可见 $z$ 越接近 1 , $E(z)$ 的取值越小,即损失越小。反之另:
\[E(z) = 1- \log (\delta(z)) \]
此时得到的图像应该为关于 $E(z)$ 对称的红色的线(没画出),此时 $z$ 越接近 -1,$E(z)$ 的取值越小,即损失越小。
注: 图中绿色的线为 square loss ,蓝色的线为 hinge loss, 红的的线为负 log 损失。
2.1 二分类问题
给定数据集 $T = \left \{ (x_i,y_i)\right \}_{i=1}^N $ , 要用这些数据做一个线性分类器,即求得最优分离超平面 $w\cdot x + b = 0$ 来将样本分为正负两类,给定数据集后只需求得最优的参数 $w , b$ 即可,为了解决这个问题,首先做出如下线性映射函数
\[y = w \cdot x + b\]
根据经验风险最小化原则, 这里引入二分类的 Hinge Loss :
\[max(0, 1- y_i(w \cdot x_i + b))\]
上图中对应的 $E(z) = max(0,1-z)$ ,所以SVM可以通过直接最小化如下损失函数二求得最优的分离超平面:
\[ \min_{w,b} \sum_{i=1}^N max(0, 1- y_i(w \cdot x_i + b)) + \lambda ||w||^2 \]
2.2 多分类问题
对于多分类问题,现在要用这些数据做一个 k 类的线性分类器 ,现在需要优化的参数变为 $W ,b$ , 此时的 $W \in \mathbb{R} ^{k \times n}$,为一个 $k \times n$ 的矩阵,$b \in \mathbb{R}^k$ 为一个向量,现在的映射关系如下 :$s =W x_i +b$,此时有 $s \in \mathbb{R}^k$ ,$s$ 中的每个分量代表分类器在该类别的得分,样本 $x_i$ 的标签 $y_i \in \mathbb{R}^k$ , 这里若 $x_i$ 属于类别 $k$ ,则 $y_i$ 中除了第 $k$ 个分量外其余元素全为 0 ,比如 5 分类问题, $x_i$ 属于第 3 类,则有 $y_i = [0,0,1,0,0]$ , 用 $s_j$ 表示得分向量 $s$ 中的第 $j$ 个分量 , $s_{y_i}$ 表示对应 $y_i = 1$ 的分量,则单个样本多分类的Hinge Loss可表示为:
\[\sum_{j \ne y_i} max(0,s_j - s_{y_i} + 1)\],
所以 $k$ 分类线性分类SVM 的 Hinge Loss表示为:
\[\min_{W,b} \sum_{i=1}^N\sum_{j \ne y_i} max(0,s_j - s_{y_i} + 1) + \lambda \sum_k \sum_nW_{k,n}^2\]
支持向量机之Hinge Loss 解释的更多相关文章
- SVM(支持向量机)之Hinge Loss解释
Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法.这里换一种角度来思考,在机器学习领域,一般的做法是经验风 ...
- 损失函数 hinge loss vs softmax loss
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁 ...
- 机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)
https://blog.csdn.net/u010976453/article/details/78488279 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f( ...
- Hinge Loss、交叉熵损失、平方损失、指数损失、对数损失、0-1损失、绝对值损失
损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好. 损失 ...
- logistic regression svm hinge loss
二类分类器svm 的loss function 是 hinge loss:L(y)=max(0,1-t*y),t=+1 or -1,是标签属性. 对线性svm,y=w*x+b,其中w为权重,b为偏置项 ...
- TransH中的Hinge Loss Function
Hinge Loss Function Hinge Loss 函数一种目标函数,有时也叫max-margin objective. 在Trans系列中,有一个 \[ \max(0,f(h,r,t) + ...
- 有关马氏距离和hinge loss的学习记录
关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...
- Hinge Loss
http://blog.csdn.net/luo123n/article/details/48878759 https://en.wikipedia.org/wiki/Hinge_loss ...
- 机器学习之十一问支持向量机(SVM)
推导了支持向量机的数学公式后,还需要对比和总结才能更深入地理解这个模型,所以整理了十一个关于支持向量机的问题. 第一问:支持向量机和感知机(Perceptron)的联系? 1.相同点: 都是一种属于监 ...
随机推荐
- uva 12589 - Learning Vector
思路: 容易知道加向量的顺序是按向量斜率的大小顺序来的.由于数据不是很大,可以用背包解决!! dp[i][j]:加入最大面积为i时,加入了j个向量. 代码如下: #include<iostrea ...
- excel设置下拉菜单,并且不同值会显示不同颜色
工作中常常要用的excel,每次都会有新的需求,然后不会,然后百度,然后过段时间可能就又忘了,于是就想说,自己记录下来~~~因为自己用的都是2010,其实哪个版本都差不多,都是应该可以找到相应的按钮滴 ...
- spring_150802_resource
接口Service: package com.spring.service; public interface DogPetService { public void queryAllDogPets( ...
- HDFS Protocol修改流程
相对于1.x版本的Hadoop,2.x版本的Hadoop采用了Protocol Buffer作为序列化反序列化工具,以及RPC通讯工具.这样当我们对Hadoop源码进行修改之前,就需要了解Ha ...
- Android基础之Activity launchMode详解
本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! Activity的lauchmode,是基础的属性,但也是App优化必须掌握的知识,它约束了Acti ...
- 【原创】【ViewFlow+GridView】Parameter must be a descendant of this view问题分析
关于ViewFlow和GridView嵌套导致Parameter must be a descendant of this view问题的解决方案 [关于ViewFlow] ViewFlow是一款 ...
- C++:主要几种排序算法及其复杂度
常见排序算法稳定性和复杂度分析快速简记以及转载 分类: 算法 2012-02-07 22:18 399人阅读 评论(1) 收藏 举报 算法mergeshell http://blogold.chin ...
- Sql server cast(as nvarchar) 默认长度问题
Sql server 在我的SQL语句中:sql=".........cast(ziduan as nvarchar) ..............." 这样之后,ziduan被转 ...
- 将SQL Azure数据库备份到本地SQL Server 2012
整个备份过程可以分为如下两大步骤进行: 一.通过“Export Data-tier Application”先将目标SQL Azure的数据库备份到本地,详细步骤如下: 1.启动SQL Server ...
- 【USACO】Transformations
A square pattern of size N x N (1 <= N <= 10) black and white square tiles is transformed into ...