题目:

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given height = [2,1,5,6,2,3],
return 10.

代码:

class Solution {
public:
int largestRectangleArea(vector<int>& height) {
int ret = ;
const size_t len = height.size();
if (!len) return len;
int *dp_left = new int[len](), *dp_right = new int[len]();
dp_left[] = ;
dp_right[len-] = len-;
// dp_left : record the left most position of height arr that the curr element can reach
for ( size_t i = ; i < len; ++i ){
int left = i;
while ( left> && height[i]<=height[left-] ) left = dp_left[left-];
dp_left[i] = left;
}
// dp_right : vice versa
for ( int i = len-; i >; --i) {
int right = i;
while ( right<len- && height[i]<=height[right+] ) right = dp_right[right+];
dp_right[i] = right;
}
// get the largest rectangle
for ( size_t i = ; i < len; ++i ) ret = std::max( ret, (dp_right[i]-dp_left[i]+)*height[i] );
delete[] dp_left;
delete[] dp_right;
return ret;
}
};

tips:

采用dp的思路,主要参考 http://www.acmerblog.com/largest-rectangle-in-histogram-6117.html

遍历三次:

1. left to right : dp_left[i]数组存放height[i]向左最多能推到哪个位置

2. right to left : dp_right[i]数组存放height[i]向右最多能推到哪个位置

注意,不论是dp_left还是dp_right存放都是height数组的绝对位置(一开始dp_right一直存放相对位置,导致不能AC)

这里虽然for循环中又有while循环,但是复杂度并不是O(n²),原因并不是一个挨着一个跳的,而是用之前比较的结果(dp_left,dp_right)跳的。

3. 最后走一遍dp,记录最大值

==========================================

自己找虐,又去追了一下stack的解法。自己写了很久并没有通过,学习了下网上的代码。

class Solution {
public:
int largestRectangleArea(vector<int>& height) {
int ret = ;
height.push_back();
stack<int> sta;
for ( int i = ; i < height.size(); )
{
if ( sta.empty() || height[i]>height[sta.top()] )
{
sta.push(i++);
}
else
{
int tmp = sta.top();
sta.pop();
ret = std::max( ret, height[tmp]*(sta.empty() ? i:i-sta.top()- ));
}
}
return ret;
}
};

核心思想就是:维护一个递增的stack。

1. 一旦遇到不能维持递增stack的元素了,就逐个往外弹出,直到能压进去。

2. 往外弹一个元素,就意味着这个元素不能再留着了,因此就计算一下包含弹出的这个元素在内,最大的rectangle是多少。

这里可能有一个疑问:把这个元素弹出来,那万一这个元素跟后面的元素能配上,获得更大大面积了呢?

这个是不可能发生的,因为这个元素能弹出来,必然是在其后面遇上了比它小的元素(阻断了被弹出的元素与后面的联系),因此这种算法是合理的。完毕。

===============================================

第二次过这道题,只记得用递增的stack来做了。

(1)stack里面存的是元素的下标

(2)先弹出来栈顶的元素,再看新的栈顶的元素(刚弹出来的这个元素往前能推到哪里)

class Solution {
public:
int largestRectangleArea(vector<int>& height) {
if (height.size()==) return ;
height.push_back();
int ret = ;
stack<int> sta;
for ( int i=; i<height.size(); ++i )
{
if ( sta.empty() || height[sta.top()]<height[i] )
{
sta.push(i);
}
else
{
while ( !sta.empty() && height[sta.top()]>=height[i] )
{
int tmp = sta.top();
sta.pop();
if ( sta.empty() )
{
ret = max(ret, i*height[tmp]);
}
else
{
ret = max(ret, (i-sta.top()-)*height[tmp]);
}
}
sta.push(i);
}
}
return ret;
}
};

【Largest Rectangle in Histogram】cpp的更多相关文章

  1. 【LeetCode】84. Largest Rectangle in Histogram

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  2. Java for LeetCode 084 Largest Rectangle in Histogram【HARD】

    For example, Given height = [2,1,5,6,2,3], return 10. 解题思路: 参考Problem H: Largest Rectangle in a Hist ...

  3. 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...

  4. LeetCode 笔记系列 17 Largest Rectangle in Histogram

    题目: Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar he ...

  5. 47. Largest Rectangle in Histogram && Maximal Rectangle

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  6. leetcode Largest Rectangle in Histogram 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052343.html 题目链接 leetcode Largest Rectangle in ...

  7. 关于LeetCode的Largest Rectangle in Histogram的低级解法

    在某篇博客见到的Largest Rectangle in Histogram的题目,感觉蛮好玩的,于是想呀想呀,怎么求解呢? 还是先把题目贴上来吧 题目写的很直观,就是找直方图的最大矩形面积,不知道是 ...

  8. leetcode之Largest Rectangle in Histogram

    问题来源:Largest Rectangle in Histogram 问题描述:给定一个长度为n的直方图,我们可以在直方图高低不同的长方形之间画一个更大的长方形,求该长方形的最大面积.例如,给定下述 ...

  9. LeetCode之“动态规划”:Maximal Square && Largest Rectangle in Histogram && Maximal Rectangle

    1. Maximal Square 题目链接 题目要求: Given a 2D binary matrix filled with 0's and 1's, find the largest squa ...

随机推荐

  1. HTML 5缓存机制:Cache Manifest配置实例

    Cache Manifest是HTML 5的一种缓存机制,文章作者直接用博客当测试环境,虽然[color=#444444 !important]应用起来非常简单,但效果却出奇的好.缓存后的速度,简直是 ...

  2. Windows Phone 开发起步之旅之二 C#中的值类型和引用类型

    今天和大家分享下本人也说不清楚的一个C#基础知识,我说不清楚,所以我才想把它总结一下,以帮助我自己理解这个知识上的盲点,顺便也和同我一样不是很清楚的人一起学习下.  一说起来C#中的数据类型有哪些,大 ...

  3. Linux ssh exit,启动的后台进程不会停止

    一般情况下,想要通过终端长时间运行任务,需要使用nohup 或者 screen,如果不使用会怎么样呢?来测试一下   描述: 场景1:ssh登录机器,通过添加(&),启动任务到后台,通过exi ...

  4. 插入排序与shell排序(希尔排序)

    1 .插入排序的过程如同我们平时打扑克牌取牌插入的过程,不断将取出的扑克牌插入已经排好的地方. 插入排序过程初始有序区间大小为1,取出无序区间的首元素,查找有序区间的合适位置,进行插入.不断重复上述过 ...

  5. 举例详解CSS中的继承

    CSS的继承是由所使用的样式属性定义的.换句话说,当你查看CSS属性backgruound-color,你会看到一栏「继承性」,也许你几乎没有在意过它,但是它还是十分有用的.什么是CSS继承 每一个元 ...

  6. sql server2005 实现读写分离

    下面我们重点介绍Sql Server 2005是如何实现负载均衡的. Sql Server 2005的新特性 端到端拓扑的事务性复制 SQL Server 2005对端到端(P2P)拓扑结构上事务性的 ...

  7. C# 运行时编辑 节点重命名

    方法一: ; bool nodeChanged = false; //右键点击,就进入修改状态 private void treeView1_NodeMouseClick(object sender, ...

  8. 【转】准确理解CSS clear:left/right的含义及实际用途

    零.说点什么 好久没更新了.并不是在折腾什么大作,而是广度学习与实践中,加上婚礼等诸多大事,所以产出较少. 今天这篇也只是小作,博客是自己很好的学习工具,只要我学习不止,博客也会不断更新的. 我们平时 ...

  9. SQL SERVER中查询参数为空(null)时默认查询所有的实现

    最近在项目中碰到一个比较有意思的问题,网上查找了一些方法,在这里总结分享一下. 我们经常会碰到这样的场景:需要查询数据,有一些查询条件,但是查询的时候,我们希望在某个条件为空的时候,则不筛选这个条件, ...

  10. php codebase生成随机数

    php使用codebase生成随机数.  有25幅作品拿去投票,一次投票需要选16幅,单个作品一次投票只能选择一次.前面有个程序员捅了漏子,忘了把投票入库,有200个用户产生的投票序列为空.那么你会如 ...