Description

Given a connected, undirected graph G = (V, E), where V is the vertex set consisting a collection of nodes, and E is the set of edges, each of which connects two nodes from V. A vertex subset S is a separator if the subgraph induced by the vertices in V, but not in S, has two connected components. We shall use the notation [S, W, B] to represent the partition, where the removal of the separator S will give two connected components W and B.

In this problem, we consider the separators in grids. Each node in a grid is connected to its eight neighbors (if they exist). In Figure-1, we illustrate a partition of a 6*6 grid with a 9-point separator (gray nodes in the figure). The nodes on the left of the separator are in set W (white nodes), and the nodes on the right of the separator are in set B (black nodes). 

To simplify the problem, you can assume that all the separators referred in this problem satisfy the following restrictions: 
1) It’s a minimal separator. A separator is minimal if no subset of it forms a separator. 
2) It begins from a node on the top line of the grid, except the corner (i.e. 30 and 35 in the figures), and ends with a node on the bottom line of the grid, also except the corner (i.e. 0 and 5 in the figures). 
3) On its way from top to bottom, it can go left, right or down, but never go up.

Now we describe a method to improve a given partition on a grid, through which we can reduce the number of nodes in the separator. This method contains two steps: 
1) Select several nodes from B and add them into S. Any of the selected nodes must have a left neighbor which is in S. 
2) Remove several nodes from S (excluding the nodes added in the former step), and add them into W.

After the improvement, we should ensure S is still a separator, and make the number of nodes in S as small as possible. As for Figure-1, we should add 14 and 20 into S, and remove 7, 13, 19 and 25 from S. After that, we obtain a new partition with a 7-point separator shown in Figure-2.

Your task is, given a partition on a grid, to determine the least number of nodes in the separator after the improvement.

Input

There are several test cases. Each case begins with a line containing two integers, N and M (3 <= M, N <= 200). In each of the following N lines, there are M characters, describing the initial partition of the M*N grid. Every character is 'S', 'W' or 'B'. It is confirmed that each of these three characters appears at least once in each line, and 'W's are always on the left of 'S's.

A test case of N = 0 and M = 0 indicates the end of input, and should not be processed.

Output

For each test case, you should output one line containing one integer, which is the least number of nodes in the separator after the improvement.

Sample Input

6 6
WWSBBB
WSSBBB
WSBBBB
WSBBBB
WSSSBB
WWWSBB
0 0

Sample Output

7

【题意】给出一个n*m的矩阵,包含w,s,b,s是分界线,每行每种都至少有一个,B在他的左边是S时能变成S,S无条件可以变成w,求最少的分界线s

【思路】先把能变成S的B全部变成s,然后进行BFS从第一行的S开始,把(0,s)(0,s+1)入队,进行三个方向的搜索下、左、右

#include<iostream>
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
const int inf=0x7777777;
const int N=;
int n,m,ans,s;
char mp[N][N];
int vis[N][N];
int di[][]={,,,,,-};//以左上角为原点,下,右,左开始搜索
struct node
{
int x,y;
int step;
};
bool go(int x,int y)
{
if(x<||x>n-||y<||y>m-) return false;
else return true;
}
void bfs()
{
memset(vis,,sizeof(vis));
queue<node>qu;
node pre,next;
pre.x=,pre.y=s;
pre.step=;
qu.push(pre);
vis[][s]=;
if(s+<m-)
{
pre.x=;pre.y=s+;
pre.step=;
qu.push(pre);
vis[][s+]=;
}
while(!qu.empty())
{
pre=qu.front();
qu.pop();
if(pre.x==n-&&pre.y>&&pre.y<m-)
{
ans=min(ans,pre.step);
}
for(int i=;i<;i++)
{
int xx=pre.x+di[i][];
int yy=pre.y+di[i][];
if(go(xx,yy)&&(!vis[xx][yy])&&mp[xx][yy]=='S')
{
next.x=xx;
next.y=yy;
next.step=pre.step+;
vis[xx][yy]=;
qu.push(next);
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m),n||m)
{
for(int i=;i<n;i++)
{
scanf("%s",mp[i]);
int flag=;
for(int j=;j<m;j++)
{
if(mp[i][j]=='B'&&mp[i][j-]=='S'&&!flag)
{
mp[i][j]='S';
flag=;
}
}
}
for(int i=;i<m;i++)
{
if(mp[][i]=='S')
{
s=i;
break;
}
}
ans=inf;
bfs();
printf("%d\n",ans); }
return ;
}

The Separator in Grid_BFS的更多相关文章

  1. UITableViewCell里面separator的设置

    最近cell显示的时候左边一直有15个像素的偏移,查了下面的方法 //1. 不管用 [self.tableView setSeparatorInset:UIEdgeInsetsZero]; // 2. ...

  2. ios7 ios8 cell中下划线偏移(separator Insets)处理方法

    在ios7中,UITableViewCell左侧会有默认15像素的空白.这时候,设置setSeparatorInset:UIEdgeInsetsZero 能将空白去掉. 但是在ios8中,设置setS ...

  3. java.io.File中的pathSeparator与separator的差异

    先总的说一下区别: File.pathSeparator指的是分隔连续多个路径字符串的分隔符,例如: java -cp test.jar;abc.jar HelloWorld 就是指";&q ...

  4. oc TableView 分割线(separator)部分显示问题

    问题:当TableView的cell不能显示完整个屏幕(屏幕有剩余),则没有显示cell的地方也会显示分割线,这不是我们想要的,正常情况下,如果没有cell则应没有分割线.如下图所示:左图为遇到问题, ...

  5. UITableViewCell的separator分隔线设置失效

    // 处理separator -(void)viewDidLayoutSubviews { if ([self.tableView respondsToSelector:@selector(setSe ...

  6. 如何更改tableView cell的accessoryView位置,如何让首尾的Separator不显示

    一,如何更改tableView cell的accessoryView位置 1.实则是更改不了的,因此右边总会有一个小边距. 2.可以向 cell 的 contentView 中添加按钮放在右边,与 c ...

  7. [ASM C/C++] C makefile:2: *** missing separator. Stop. 问题

    在利用make编译代码时,makefile文件的目标代码前面要用tab而不能用空格来代替. 要不然就会提示: makefile:2: *** missing separator.  Stop. 要注意 ...

  8. 千份位Javascript Thousand Separator / string format

    function Separator(str){ return str.split(/(\d+)(\d{3})(\d{3})(\d{3})(\d{3})/).join(',').replace(/^, ...

  9. 关于Java的File.separator

    在Windows下的路径分隔符和Linux下的路径分隔符是不一样的,当直接使用绝对路径时,跨平台会暴出“No such file or diretory”的异常. 比如说要在temp目录下建立一个te ...

随机推荐

  1. 233. Number of Digit One *HARD* -- 从1到n的整数中数字1出现的次数

    Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...

  2. oracle错误码

    ORA-00001: 违反唯一约束条件 (.) ORA-00017: 请求会话以设置跟踪事件 ORA-00018: 超出最大会话数 ORA-00019: 超出最大会话许可数 ORA-00020: 超出 ...

  3. 《Play for Java》学习笔记(四)Controller

    play的一大优势是可以将HTTP映射到JAVA API代码(Type-safe mapping from HTTP to an idiomatic Scala or Java API),完美的实现了 ...

  4. JDE处理选项

    处理选项为JDE的一种数据结构,命名方式如下: The name of a data structure can be a maximum of characters-only if you begi ...

  5. 为什么 Node.js 这么火,而同样异步模式 Python 框架 Twisted 却十几年一直不温不火?

    twisted是一个强大的异步网络框架,应用的面也非常广,但是没有这几年才出现的Node.js火,社区.文档也是很少可怜我觉得二者其实在本质上差不多,而且python使用起来还是比较容易一些的 匿名用 ...

  6. ASP.NET-遇到的错误汇总

    错误:“未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序.” 在win7 64未上,读取Excel中的数据时报的错误, 解决方法:在生成"配置管理器中" ...

  7. 如何删除href=""中的链接?

    答案:在dw中操作,删除 HTML文件的href的链接地址\href="[^"]*"href="" 同理可以在title="[^" ...

  8. test python

    #coding = utf-8import conn as confrom mysql import mysql as my def link_ppd( pre = 'ppd' ):#link ppd ...

  9. ASP.NET的运行原理与运行机制

    在Asp.net4和4.5中,新增了WebPages Framework,编写页面代码使用了新的Razor语法,代码更加的简洁和符合Web标准,编写方式更接近于PHP和以前的Asp,和使用WebFor ...

  10. [js]变量声明、函数声明、函数定义式、形参之间的执行顺序

    一.当函数声明和函数定义式(变量赋值)同名时 function ledi(){ alert('ledi1'); }; ledi(); var ledi = function (){ alert('le ...