A Simple Problem with Integers

Time Limit: 5000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 4494 Accepted Submission(s): 1384

Problem Description

Let A1, A2, … , AN be N elements. You need to deal with two kinds of operations. One type of operation is to add a given number to a few numbers in a given interval. The other is to query the value of some element.

Input

There are a lot of test cases.

The first line contains an integer N. (1 <= N <= 50000)

The second line contains N numbers which are the initial values of A1, A2, … , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)

The third line contains an integer Q. (1 <= Q <= 50000)

Each of the following Q lines represents an operation.

“1 a b k c” means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)

“2 a” means querying the value of Aa. (1 <= a <= N)

Output

For each test case, output several lines to answer all query operations.

Sample Input

4

1 1 1 1

14

2 1

2 2

2 3

2 4

1 2 3 1 2

2 1

2 2

2 3

2 4

1 1 4 2 1

2 1

2 2

2 3

2 4

Sample Output

1

1

1

1

1

3

3

1

2

3

4

1

Source

2012 ACM/ICPC Asia Regional Changchun Online

比赛的时候没有注意到k的值很小果断超时.

更新区间(a,b)中(i-a)%k==0的点其实就是更新区间(a,b)中i%k==a%k的值,所以可以用树状数组实现

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAX = 55000; int FK[MAX][11][11]; int num[MAX]; int n,m; int lowbit(int x)
{
return x&(-x);
}
void update(int x,int k,int mod,int va)//更新摸为k,取模后为mod的区间的数组
{
while(x>0)
{
FK[x][k][mod]+=va;
x-=lowbit(x);
}
}
int Query(int x,int a)//查询a所在的区间的增加值
{
int s=0;
while(x<MAX)
{
for(int i=1;i<=10;i++)
{
s+=FK[x][i][a%i];
}
x+=lowbit(x);
}
return s;
} int main()
{
int flag,a,b,k,va;
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&num[i]);
}
scanf("%d",&m);
memset(FK,0,sizeof(FK));
for(int i=1;i<=m;i++)
{
scanf("%d",&flag);
if(flag==1)
{
scanf("%d %d %d %d",&a,&b,&k,&va);
update(b,k,a%k,va);
update(a-1,k,a%k,-va);
}
else
{
scanf("%d",&a);
printf("%d\n",Query(a,a)+num[a]);
}
}
}
return 0;
}

A Simple Problem with Integers(树状数组HDU4267)的更多相关文章

  1. HDU 4267 A Simple Problem with Integers --树状数组

    题意:给一个序列,操作1:给区间[a,b]中(i-a)%k==0的位置 i 的值都加上val  操作2:查询 i 位置的值 解法:树状数组记录更新值. 由 (i-a)%k == 0 得知 i%k == ...

  2. POJ3468 A Simple Problem With Integers 树状数组 区间更新区间询问

    今天学了很多关于树状数组的技巧.一个是利用树状数组可以简单的实现段更新,点询问(二维的段更新点询问也可以),每次修改只需要修改2个角或者4个角就可以了,另外一个技巧就是这题,原本用线段树做,现在可以用 ...

  3. POJ3468 A Simple Problem with Interger [树状数组,差分]

    题目传送门 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 1 ...

  4. A Simple Problem with Integers_树状数组

    Problem Description Let A1, A2, ... , AN be N elements. You need to deal with two kinds of operation ...

  5. luogu 2519 [HAOI2011]problem a 动态规划+树状数组

    发现每一次 $[b[i]+1,n-a[i]]$ 这个区间的分数必须相同,否则不合法. 而一个相同的区间 $[l,r]$ 最多只能出现区间长度次. 于是,就得到了一个 $dp:$ 将每一种区间的出现次数 ...

  6. A Simple Problem with Integers 多树状数组分割,区间修改,单点求职。 hdu 4267

    A Simple Problem with Integers Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. Poj 3468-A Simple Problem with Integers 线段树,树状数组

    题目:http://poj.org/problem?id=3468   A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

  8. A Simple Problem with Integers(100棵树状数组)

    A Simple Problem with Integers Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. POJ 3468 A Simple Problem with Integers(树状数组区间更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 97217   ...

随机推荐

  1. AIR 14 Beta - Missing builtin type Object 解决方法

    使用AIR SDK14 时候出现 Missing builtin type Object 的问题 参考 https://forums.adobe.com/thread/1483159 下载最新的Fla ...

  2. 新建一个Activity通过按钮打开它,再通过按钮关闭它

    首先需要创建一个供打开和关闭的Activity,先在scr下当前项目的包中创建一个新类Activity1, 并选择让其继承自Activity类,如下图所示: 之后配置AndroidMainifest. ...

  3. Codeforce Round #227 Div2

    这回的看错时间了! 发现理论可以涨分的- -

  4. [摘录]quarts:feature

    Features of Quartz Runtime Environments Quartz can run embedded within another free standing applica ...

  5. Java基础(56):Java---Assertion的试用(华为OJ里的Java题目的用例检测就是用的断言)

    一.assertion的意义和用法 J2SE 1.4在语言上提供了一个新特性,就是assertion功能,它是该版本在Java语言方面最大的革新. 从理论上来说,通过 assertion方式可以证明程 ...

  6. C++之路进阶——codevs2366(朋友圈)

    2366 朋友圈 2012年省队选拔赛河北  时间限制: 10 s  空间限制: 256000 KB  题目等级 : 大师 Master     题目描述 Description 在很久很久以前,曾经 ...

  7. length() 和 size()

    length() 和 size() ==>length() 是针对数组字符串说的 size() 是针对 泛型集合的

  8. Ajax 核心函数

    今天刚刚了解了Ajax的一个核心函数,由于对javascript还没有系统的学习,目前还没有深入研究Ajax.但是在运用此函数的同时也发现了一些问题--编码问题.这样在后台接收到的URL参数若果有汉字 ...

  9. 夺命雷公狗---2016-linux---1之ip的配置

    在linux下输入以下命令即可配置成功, 但是前提是linux下的这个ip地址的ip段是通过本地ping出来的才可以,如下所示: 然后查看下是否配置成功: 已经配置成功了,那么下一步我们可以ping下 ...

  10. spring的事务回滚

    @Transactional(rollbackFor = { Exception.class }) 需要把异常抛出到带有@Transactional(rollbackFor = { Exception ...