1 前言

DPDK通过使用hugetlbfs,减少CPU TLB表的Miss次数,提高性能。

2 初始化

DPDK的内存初始化工作,主要是将hugetlbfs的配置的大内存页,根据其映射的物理地址是否连续、属于哪个Socket等,有效的组织起来,为后续管理提供便利。

2.1 eal_hugepage_info_init()

eal_hugepage_info_init()主要是获取配置好的Hugetlbfs的相关信息,并将其保存在struct internal_config数据结构中。

主要工作如下:

  1、读取/sys/kernel/mm/hugepages目录下的各个子目录,通过判断目录名称中包含"hugepages-"字符串,获取hugetlbfs的相关子目录,并获取hugetlbfs配置的内存页大小。例如:  

  [root@YMOS_DEFAULT ~]# ls -ltr /sys/kernel/mm/hugepages/
  total 0
  drwxr-xr-x 2 root root 0 2014-11-04 15:54 hugepages-2048kB

  2、通过读取/proc/mounts信息,找到hugetlbfs的挂载点。例如:    

  root@Ubuntu:~# cat /proc/mounts 
  rootfs / rootfs rw 0 0
  sysfs /sys sysfs rw,nosuid,nodev,noexec,relatime 0 0
  proc /proc proc rw,nosuid,nodev,noexec,relatime 0 0
  udev /dev devtmpfs rw,relatime,size=1016836k,nr_inodes=254209,mode=755 0 0
  devpts /dev/pts devpts rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000 0 0
  tmpfs /run tmpfs rw,nosuid,noexec,relatime,size=205128k,mode=755 0 0
  /dev/disk/by-uuid/fd1dbca3-ac30-4bac-b93a-0d89b0fd152c / ext4 rw,relatime,errors=remount-ro,user_xattr,barrier=1,data=ordered 0 0
  none /sys/fs/fuse/connections fusectl rw,relatime 0 0
  none /sys/kernel/debug debugfs rw,relatime 0 0
  none /sys/kernel/security securityfs rw,relatime 0 0
  none /run/lock tmpfs rw,nosuid,nodev,noexec,relatime,size=5120k 0 0
  none /run/shm tmpfs rw,nosuid,nodev,relatime 0 0
  none /media/sf_F_DRIVE vboxsf rw,nodev,relatime 0 0
  gvfs-fuse-daemon /home/chuanxinji/.gvfs fuse.gvfs-fuse-daemon rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0
  /dev/sr0 /media/VBOXADDITIONS_4.3.10_93012 iso9660 ro,nosuid,nodev,relatime,uid=1000,gid=1000,iocharset=utf8,mode=0400,dmode=0500 0 0
  none /mnt/huge hugetlbfs rw,relatime 0 0
  root@Ubuntu:~#

  3、通过读取/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages,获取配置的hugepages个数。

  root@Ubuntu:~# cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
  64
  root@Ubuntu:~#

  4、以打开文件的方式,打开挂载点目录,为其FD设置互斥锁,Why??

上述所有获取的信息,都保存在internal_config.hugepage_info[MAX_HUGEPAGES_SIZE]中,hugepage_info数据结构如下:

 struct hugepage_info {
  size_t hugepage_sz; /**< size of a huge page */
  const char *hugedir; /**< dir where hugetlbfs is mounted */
  uint32_t num_pages[RTE_MAX_NUMA_NODES];
  /**< number of hugepages of that size on each socket */
  int lock_descriptor; /**< file descriptor for hugepage dir */
};

  具体赋值如下,

  hpi->hugepage_sz = 2M;
  hpi->hugedir = /mnt/huge;
  hpi->num_pages[0] = 64; // 由于此时还不知道哪些内存页分处在哪个socket上,故,都先放在socket-0上。
  hpi->lock_descriptor = open(hpi->hugedir, O_RONLY); // 在读取hugetlbfs配置的时候,需要锁住整个目录。当所有hugepage都mmap完成后,会解锁。

  5、将internal_config.hugepage_info[MAX_HUGEPAGES_SIZE]按内存页的大小排序。

2.2 rte_eal_config_create()

rte_eal_config_create()主要是初始化rte_config.mem_config。如果是以root用户运行dpdk程序的话,rte_config.mem_config指向/var/run/.rte_config文件mmap的一段sizeof(struct rte_mem_config)大小的内存。

rte_config.mem_config = /var/run/.rte_config文件mmap的首地址;

 struct rte_config {
uint32_t master_lcore; /**< Id of the master lcore */ ... ... struct rte_mem_config *mem_config;
} __attribute__((__packed__));

struct rte_mem_config数据结构如下:

 struct rte_mem_config {
volatile uint32_t magic; /**< Magic number - Sanity check. */ /* memory topology */
uint32_t nchannel; /**< Number of channels (0 if unknown). */
uint32_t nrank; /**< Number of ranks (0 if unknown). */ /**
* current lock nest order
* - qlock->mlock (ring/hash/lpm)
* - mplock->qlock->mlock (mempool)
* Notice:
* *ALWAYS* obtain qlock first if having to obtain both qlock and mlock
*/
rte_rwlock_t mlock; /**< only used by memzone LIB for thread-safe. */
rte_rwlock_t qlock; /**< used for tailq operation for thread safe. */
rte_rwlock_t mplock; /**< only used by mempool LIB for thread-safe. */ uint32_t memzone_idx; /**< Index of memzone */ /* memory segments and zones */
struct rte_memseg memseg[RTE_MAX_MEMSEG]; /**< Physmem descriptors. */
struct rte_memzone memzone[RTE_MAX_MEMZONE]; /**< Memzone descriptors. */ /* Runtime Physmem descriptors. */
struct rte_memseg free_memseg[RTE_MAX_MEMSEG]; struct rte_tailq_head tailq_head[RTE_MAX_TAILQ]; /**< Tailqs for objects */ /* Heaps of Malloc per socket */
struct malloc_heap malloc_heaps[RTE_MAX_NUMA_NODES];
} __attribute__((__packed__));

2.3 rte_eal_hugepage_init()

rte_eal_hugepage_init()主要是在/mnt/huge目录下创建hugetlbfs配置的内存页数(在本文中就是64)的rtemap_xx文件,并为每个rtemap_xx文件做mmap映射,保证mmap后的虚拟地址与实际的物理地址是一样的。

具体如下:

1、创建nr_hugepages个struct hugepage_file数组,即有多少个内存页,创建多少个struct hugepage_file数据结构。struct hugepage_file数据结构如下:

 struct hugepage_file {
void *orig_va; /**< virtual addr of first mmap() */
void *final_va; /**< virtual addr of 2nd mmap() */
uint64_t physaddr; /**< physical addr */
size_t size; /**< the page size */
int socket_id; /**< NUMA socket ID */
int file_id; /**< the '%d' in HUGEFILE_FMT */
int memseg_id; /**< the memory segment to which page belongs */
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
int repeated; /**< number of times the page size is repeated */
#endif
char filepath[MAX_HUGEPAGE_PATH]; /**< path to backing file on filesystem */
};

2、有多少个内存页,在挂载点目录下创建多少个rtemap_xx文件,如下所示,并为每一个文件mmap一个hugepage_sz大小的内存区域。其中,

     hugepage_file->orig_va = 记录每个rtemap_xx文件mmap的首地址;

     hugepage_file->file_id = 创建的rtemap_xx的顺序,就是xx的值;

     hugepage_file->filepath = /mnt/huge/rtemap_xx;

     hugepage_file->size = hugepage_sz,也就是2M;

     root@Ubuntu:~# ls -tlr /mnt/huge/
total 131072
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_2
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_1
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_0
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_8
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_7
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_6               ... ... -rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_60
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_59
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_58
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_63
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_62
-rwxr-xr-x 1 root root 2097152 Nov 5 14:53 rtemap_61
root@Ubuntu:~#

3、通过读取/proc/self/pagemap页表文件,得到本进程中虚拟地址与物理地址的映射关系。使用上一步中,每个rtemap_xx文件mmap得到的虚拟地址,除以操作系统内存页的大小4k,得到一个偏移量。根据这个偏移量,在/prox/self/pagemap中,得到物理地址的页框,假设为page,那么,物理页框page乘以操作系统内存页的大小4K,再加上虚拟地址的页偏移,就是物理地址。每个rtemap_xx映射的物理地址保存在对应的hugepage_file->physaddr中。

 physaddr = ((page & 0x7fffffffffffffULL) * page_size) + ((unsigned long)virtaddr % page_size);

4、读取/proc/self/numa_maps,得到每个rtemap_xx文件mmap得到的虚拟地址在哪个Socket上,即,哪个CPU上。其socketid保存在对应的hugepage_file->socket_id中。

root@Ubuntu:~# cat /proc/self/numa_maps 
00400000 default file=/bin/cat mapped=7 mapmax=2 N0=7
0060a000 default file=/bin/cat anon=1 dirty=1 N0=1
0060b000 default file=/bin/cat anon=1 dirty=1 N0=1
025c1000 default heap anon=3 dirty=3 active=0 N0=3
7fdf0222c000 default file=/usr/lib/locale/locale-archive mapped=10 mapmax=61 N0=10
7fdf0290f000 default file=/lib/x86_64-linux-gnu/libc-2.15.so mapped=82 mapmax=128 N0=82
7fdf02ac4000 default file=/lib/x86_64-linux-gnu/libc-2.15.so
7fdf02cc3000 default file=/lib/x86_64-linux-gnu/libc-2.15.so anon=4 dirty=4 N0=4
7fdf02cc7000 default file=/lib/x86_64-linux-gnu/libc-2.15.so anon=2 dirty=2 N0=2
7fdf02cc9000 default anon=3 dirty=3 active=1 N0=3
7fdf02cce000 default file=/lib/x86_64-linux-gnu/ld-2.15.so mapped=27 mapmax=122 N0=27
7fdf02ed7000 default anon=3 dirty=3 N0=3
7fdf02eee000 default anon=2 dirty=2 N0=2
7fdf02ef0000 default file=/lib/x86_64-linux-gnu/ld-2.15.so anon=1 dirty=1 N0=1
7fdf02ef1000 default file=/lib/x86_64-linux-gnu/ld-2.15.so anon=2 dirty=2 N0=2
7fff09be1000 default stack anon=3 dirty=3 N0=3
7fff09cc2000 default
root@Ubuntu:~#

5、在hugepage_file数组中,根据物理地址,按从小到大的顺序,将hugepage_file排序。

6、根据按物理地址排序后的结果,判断物理地址是否连续,重新mmap /mnt/huge/retmap_xx文件,使得物理地址等于第二次mmap后的虚拟地址。第二次mmap得到的虚拟地址保存在对应的hugepage_file->final_va中。

7、munmap释放第一步中各个rtemap_xx文件首次mmap得到的内存地址。

8、计算每个socket上包含多少个hugepage,信息保存在internal_config.hugepage_info[0].num_pages[socket]中。

9、calc_num_pages_per_socket(),目的是什么???

10、为/var/run/.rte_hugepage_info文件mmap一段nr_hugepages * sizeof(struct hugepage_file)大小的内存块,并将第一步中创建的hugepage_file数组中的所有内容,都copy到这一块内存中。

11、rte_config.mem_config->memseg[]数组记录hugepage_file映射后物理地址连续的块数,hugepage_file->memseg_id为该huepage_file的物理地址在哪个rte_config.mem_config->memseg[]数组中。struct rte_memseg数据结构如下:

 struct rte_memseg {
phys_addr_t phys_addr; /**< Start physical address. */
union {
void *addr; /**< Start virtual address. */
uint64_t addr_64; /**< Makes sure addr is always 64 bits */
};
#ifdef RTE_LIBRTE_IVSHMEM
phys_addr_t ioremap_addr; /**< Real physical address inside the VM */
#endif
size_t len; /**< Length of the segment. */
size_t hugepage_sz; /**< The pagesize of underlying memory */
int32_t socket_id; /**< NUMA socket ID. */
uint32_t nchannel; /**< Number of channels. */
uint32_t nrank; /**< Number of ranks. */
#ifdef RTE_LIBRTE_XEN_DOM0
/**< store segment MFNs */
uint64_t mfn[DOM0_NUM_MEMBLOCK];
#endif
} __attribute__((__packed__));

  rte_config.mem_config->memseg[j].phys_addr = 各物理地址是连续的内存块的首地址。

  rte_config.mem_config->memseg[j].addr = 各个物理地址是连续的内存块对应的虚拟地址的首地址。由于物理地址和虚拟地址是相同的,这个值应该等于phys_addr。

  rte_config.mem_config->memseg[j].len = 各个物理地址是连续的内存块的大小。

  rte_config.mem_config->memseg[j].socket_id = 内存块在哪个socket上。。

  rte_config.mem_config->memseg[j].hugepage_sz = hugepage内存页的大小。本文中是2M。

2.4 rte_eal_memdevice_init()

rte_eal_memdevice_init()初始化rte_config.mem_config->nchannel和rte_config.mem_config->nrank。

  rte_config.mem_config->nchannel = 启动参数中“-n”指定的值,不能为0,不能大于4。

  rte_config.mem_config->nrank = 启动参数中“-r”指定的值。不能为0,不能大于16。

2.5 rte_eal_memzone_init()

rte_eal_memzone_init()主要负责初始化rte_config.mem_config->free_memseg[]及rte_config.mem_config->memzone[]。其中,rte_config.mem_config->free_memseg[]记录空闲的rte_config.mem_config->memseg[]。

3、总结

如下图:

DPDK内存管理-----(一)初始化的更多相关文章

  1. 启动期间的内存管理之初始化过程概述----Linux内存管理(九)

    在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检 ...

  2. DPDK内存管理(1)

    1 前言 DPDK将利用hugepage预留的物理内存统一的组织管理起来,然后以库的方式对外提供使用的接口.下图展示了DPDK中内存有关的模块的相互关系. rte_eal            是统一 ...

  3. DPDK内存管理-----(二)rte_mempool内存管理

    DPDK以两种方式对外提供内存管理方法,一个是rte_mempool,主要用于网卡数据包的收发:一个是rte_malloc,主要为应用程序提供内存使用接口.本文讨论rte_mempool.rte_me ...

  4. DPDK内存管理(1)(转)

    1 前言 DPDK将利用hugepage预留的物理内存统一的组织管理起来,然后以库的方式对外提供使用的接口.下图展示了DPDK中内存有关的模块的相互关系. rte_eal            是统一 ...

  5. DPDK内存管理-----(三)rte_malloc内存管理

    rte_malloc()为程序运行过程中分配内存,模拟从堆中动态分配内存空间. void * rte_malloc(const char *type, size_t size, unsigned al ...

  6. DPDK内存管理-----rte_mbuf(转)

    本文主要介绍rte_mbuf与rte_mempool数据结构之间的组织关系.以及网卡接收到的数据是如何存储在rte_mbuf中的. 一.rte_mbuf.rte_mempool及网卡收到的数据包在内存 ...

  7. Linux0.11内核--内存管理之1.初始化

    [版权所有,转载请注明出处.出处:http://www.cnblogs.com/joey-hua/p/5597705.html ] Linux内核因为使用了内存分页机制,所以相对来说好理解些.因为内存 ...

  8. linux内存管理初始化

    内存管理子系统是linux内核最核心最重要的一部分,内核的其他部分都需要在内存管理子系统的基础上运行.而对其初始化是了解整个内存管理子系统的基础.对相关数据结构的初始化是从全局启动例程start_ke ...

  9. 启动期间的内存管理之bootmem_init初始化内存管理–Linux内存管理(十二)

    1. 启动过程中的内存初始化 首先我们来看看start_kernel是如何初始化系统的, start_kerne定义在init/main.c?v=4.7, line 479 其代码很复杂, 我们只截取 ...

随机推荐

  1. 在Virtual Box虚拟机中安装MS DOS!

    原文地址:https://mylinuxramblings.wordpress.com/2010/12/05/linux-mint-debian-edition-lmde-first-impressi ...

  2. ubuntu 安装compiz后 黑屏无法进入处理

    因为我们显卡的原因而出现不兼容,设置之后会出现菜单栏消失.窗口假死等现象,请保持平静心态,默默重启,如果发现进不去桌面了,可以试试Ctrl+Alt+F1进入字符界面,输入以下命令: dconf res ...

  3. Java中的GC操作及相关概念

    一.GC Roots Tracing的基本思路:通过一系列名为"GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索所经过的路径称为引用链(Reference Chai ...

  4. Jmeter html 报告中添加90% line time

    转载南风_real博客园:http://www.cnblogs.com/jaychang/p/5784882.html 首先上效果图: 其次明白几个原理: 90% Line的意思是:一组数由小到大进行 ...

  5. js判断手机是的操作系统

    var browser = { versions: function() { var u = navigator.userAgent, app = navigator.appVersion; retu ...

  6. 理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)

    理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog. ...

  7. java中整数类型(short int long)的存储方式

    在java中的整数类型有四种,分别是 byte  short int long 其中byte只有一个字节 0或1,在此不详细讲解. 其他的三种类型如下: 1.基本类型:short 二进制位数:16包装 ...

  8. (easy)LeetCode 257.Binary Tree Paths

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  9. Node.js发送邮件

    1.使用nodemailer模块 var nodemailer = require("nodemailer"); 2.代码如下 exports.send_email = funct ...

  10. JavaScript对象的创建之使用json格式定义

    json: javascript simple object notation. json就是js的对象,但是它省去了xml中的标签,而是通过{}来完成对象的说明. 定义对象 var person = ...