Xiao Ming's Hope

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1668    Accepted Submission(s): 1109

Problem Description
Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day 2011.11.11 comes. Seeing classmates walking with their girl friends, he coundn't help running into his classroom, and then opened his maths book preparing to count odd numbers. He looked at his book, then he found a question "C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=?". Of course, Xiao Ming knew the answer, but he didn't care about that , What he wanted to know was that how many odd numbers there were? Then he began to count odd numbers. When n is equal to 1, C(1,0)=C(1,1)=1, there are 2 odd numbers. When n is equal to 2, C(2,0)=C(2,2)=1, there are 2 odd numbers...... Suddenly, he found a girl was watching him counting odd numbers. In order to show his gifts on maths, he wrote several big numbers what n would be equal to, but he found it was impossible to finished his tasks, then he sent a piece of information to you, and wanted you a excellent programmer to help him, he really didn't want to let her down. Can you help him?
 
Input
Each line contains a integer n(1<=n<=108)
 
Output
A single line with the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n).
 
Sample Input
1
2
11
 
Sample Output
2
2
8
 
Author
HIT
 
Source
 
Recommend
zhuyuanchen520   |   We have carefully selected several similar problems for you:  4340 4348 4347 4346 4345 
 
本题为Lucas定理推导题,我们分析一下 C(n,m)%2,那么由lucas定理,我们可以写
* 成二进制的形式观察,比如 n=1001101,m是从000000到1001101的枚举,我们知道在该定理中
* C(0,1)=0,因此如果n=1001101的0对应位置的m二进制位为1那么C(n,m) % 2==0,因此m对应n为0的
* 位置只能填0,而1的位置填0,填1都是1(C(1,0)=C(1,1)=1),不影响结果为奇数,并且保证不会
* 出n的范围,因此所有的情况即是n中1位置对应m位置0,1的枚举,那么结果很明显就是:2^(n中1的个数)
ps:可以暴力打表找规律。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <set>
#include <vector>
using namespace std;
int n,sum ;
int main(){
while(scanf("%d",&n) != EOF){
sum = ;
while(n){
sum += (n & );
n >>= ;
}
printf("%d\n", ( << sum));
}
return ;
}

Hdu4349 Xiao Ming's Hope的更多相关文章

  1. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  2. HDU 5433 Xiao Ming climbing dp

    Xiao Ming climbing Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/ ...

  3. hdu 5433 Xiao Ming climbing(bfs+三维标记)

    Problem Description   Due to the curse made by the devil,Xiao Ming is stranded on a mountain and can ...

  4. hdu 4349 Xiao Ming's Hope 规律

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 5433 Xiao Ming climbing 动态规划

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5433 Xiao Ming climbing Time Limit: 2000/1000 MS (Ja ...

  6. HDU 4349——Xiao Ming's Hope——————【Lucas定理】

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. HDU 4349 Xiao Ming's Hope 找规律

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...

  8. hdu5433 Xiao Ming climbing

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission ...

  9. HDU 4349 Xiao Ming's Hope

    有这样一个性质:C(n,m)%p=C(p1,q1)*C(p2,q2).......%p,其中pkpk-1...p1,qkqk-1...q1分别是n,m在p进制下的组成. 就完了. #include&l ...

随机推荐

  1. 用Jenkins+Gradle+Jetty实现持续集成、测试、部署

    自动集成有很多种方案,本例用到的工具是Jenkins(前身Hudson)+Gradle+Jetty,关于Gradle可参考上一篇,Gradle常见问题. 本例项目名称: WAP Jetty 安装Jen ...

  2. install Matlab2016b on Ubuntu 14.04

    From Download Download the install file from Download MATLAB, Simulink, Stateflow, and Other MathWor ...

  3. Spark运行在eclipse_使用PyDev和pyspark

    一直想在eclipse上编写Spark程序,但是仿佛是因为spark的安装包提供了PS D:\software\spark-1.6.1-bin-hadoop2.6> .\bin\spark-su ...

  4. 《FLASH CC 2015 CANVAS 中文教程》——1、导出canvas动画,文件结构浅析

    注::如果你对 FLASH 这个软件操作不够熟悉,建议你可以先看看FLASH动画之类的书. :FLASH CC 在文中直接简称为CC. :以下所以文章中所说的快捷键 如果你按了不起作用,请检查是否有其 ...

  5. iOS - UIViewController

    前言 NS_CLASS_AVAILABLE_IOS(2_0) @interface UIViewController : UIResponder <NSCoding, UIAppearanceC ...

  6. linux学习笔记2-命令总结4

    帮助命令 help - 帮助命令 man - 获取帮助信息 用户管理命令 useradd - 添加新用户 passwd - 设置用户密码 who - 显示所有用户 w - 查看更详细的用户信息 use ...

  7. android MTK驱动背光唤醒流程

    在标准的android驱动中,睡眠唤醒流程非常清晰,能够较方便的更改lcd唤醒时间和led背光的点亮时间,但是也很容易出现问题,比如说闪屏,唤醒慢! 出现闪屏有两个原因 1. 开背光时间在唤醒lcd前 ...

  8. shell脚本中获取本机ip地址的方法

    ipaddr='172.0.0.1' ipaddr=$(ip addr | awk '/^[0-9]+: / {}; /inet.*global/ {print gensub(/(.*)\/(.*)/ ...

  9. 转!!Java学习之自动装箱和自动拆箱源码分析

    自动装箱(boxing)和自动拆箱(unboxing)   首先了解下Java的四类八种基本数据类型   基本类型 占用空间(Byte) 表示范围 包装器类型 boolean 1/8 true|fal ...

  10. Hbase之批量数据写入

    /** * Created by similarface on 16/8/16. */ import java.io.IOException; import org.apache.hadoop.con ...