【HDOJ】【3516】Tree Construction
DP/四边形不等式
这题跟石子合并有点像……
dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价。
易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[k+1][j-(k-i+1)]+w(i,k,j)}
(这个地方一开始写错了……)
即,将一棵树从k处断开成(i,k)和(k+1,i+j-1)两棵树,再加上将两棵树连起来的两条树枝的长度w(i,k,j)
其中,$ w(i,k,j)=x[k+1]-x[i]+y[k]-y[i+j-1] $
那么根据四边形不等式易知 $s[i][j-1] \leq k \leq s[i+1][j-1] $
如果觉得上面那种不好懂,那我们来看个好懂的:
dp[i][j]表示将第 i 个点到第 j 个点合并的最小代价。
易知有 dp[i][j]=min{ dp[i][j],dp[i][k]+dp[k+1][j]+w(i,k,j) }
即,将一棵树从k处断开成(i,k)和(k+1,j) 两棵树,再加上将两棵树连起来的两条树枝的长度w(i,k,j)
w(i,k,j)的定义与上同
那么根据四边形不等式易知 $s[i][j-1] \leq k \leq s[i+1][j] $
其实,两种表示方法是一样的,递推时都按照区间长度为阶段进行递推(想一想,第二种中 (i,j-1) 和 (i+1,j) 的长度是不是 都是(i,j)的长度-1?)
只是第二种写法的方程看上去好看,也好写……sigh那我写第一种干嘛T_T算了不改了
反正基本就是石子合并的原题啦~除了w函数的定义不同……
//HDOJ 3516
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
#define CC(a,b) memset(a,b,sizeof(a))
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') sign=-; ch=getchar();}
while(isdigit(ch)) {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,INF=~0u>>;
const double eps=1e-;
/*******************template********************/
//#define debug
int x[N],y[N],dp[N][N],s[N][N];
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
int n;
while(scanf("%d",&n)!=EOF){
F(i,,n) x[i]=getint(),y[i]=getint();
F(i,,n){
dp[i][]=;
s[i][]=i;
}
F(i,,n-){
dp[i][]=x[i+]-x[i]+y[i]-y[i+];
s[i][]=i;
}
#ifdef debug
F(i,,n-) printf("%d ",dp[i][]);
printf("\n");
#endif
F(j,,n)
F(i,,n-j+){
dp[i][j]=INF;
F(k,s[i][j-],s[i+][j-]){
int tmp=y[k]-y[i+j-]+x[k+]-x[i]+dp[i][k-i+]+dp[k+][j-(k-i+)];
#ifdef debug
printf("i=%d k=%d j=%d\n",i,k,j);
printf("dp[i][k-i+1]=%d dp[k+1][j-k]=%d\n",dp[i][k-i+],dp[k+][j-k]);
#endif
if (tmp<dp[i][j]){
s[i][j]=k;
dp[i][j]=tmp;
}
}
}
#ifdef debug
F(j,,n){
F(i,,n) printf("%d ",dp[i][j]);
printf("\n");
}
F(j,,n){
F(i,,n) printf("%d ",s[i][j]);
printf("\n");
}
#endif
printf("%d\n",dp[][n]);
}
return ;
}
(156MS 9076K)
【HDOJ】【3516】Tree Construction的更多相关文章
- 【HDOJ图论题集】【转】
=============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...
- 【集训笔记】博弈论相关知识【HDOJ 1850【HDOJ2147
以下资料来自:http://blog.csdn.net/Dinosoft/article/details/6795700 http://qianmacao.blog.163.com/blog/stat ...
- 【HDOJ 5379】 Mahjong tree
[HDOJ 5379] Mahjong tree 往一颗树上标号 要求同一父亲节点的节点们标号连续 同一子树的节点们标号连续 问一共同拥有几种标法 画了一画 发现标号有二叉树的感觉 初始标号1~n 根 ...
- CF 675D——Tree Construction——————【二叉搜索树、STL】
D. Tree Construction time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- HDOJ 1501 Zipper 【DP】【DFS+剪枝】
HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- 【题解】【BT】【Leetcode】Binary Tree Preorder/Inorder/Postorder (Iterative Solution)
[Inorder Traversal] Given a binary tree, return the inorder traversal of its nodes' values. For exam ...
- 【BZOJ2959】长跑(Link-Cut Tree,并查集)
[BZOJ2959]长跑(Link-Cut Tree,并查集) 题面 BZOJ 题解 如果保证不出现环的话 妥妥的\(LCT\)傻逼题 现在可能会出现环 环有什么影响? 那就可以沿着环把所有点全部走一 ...
- 【BZOJ4825】【HNOI2017】单旋(Link-Cut Tree)
[BZOJ4825][HNOI2017]单旋(Link-Cut Tree) 题面 题面太长,懒得粘过来 题解 既然题目让你写Spaly 那就肯定不是正解 这道题目,让你求的是最大/最小值的深度 如果有 ...
- 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)
[BZOJ5020][THUWC2017]在美妙的数学王国中畅游(Link-Cut Tree,组合数学) 题解 Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙 ...
- 【BZOJ2588】Count On a Tree(主席树)
[BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...
随机推荐
- FaceBook微光闪烁---第三方开源--shimmer-android
Android上的微光闪烁shimmer效果,实现的手段不少,其中比较好的是facebook做的开源库:shimmer-android,其在github上的项目主页是:https://github.c ...
- C++primer 阅读点滴记录(三)
14章 操作符重载和转换 重载操作符是具有特殊名称的函数:保留字operator后接需要定义的操作符符号. 1.重载的操作符名: + – * / % ^ & | ~ ! , = < & ...
- delphi中表示跳出的有break,continue, exit,abort, halt, runerror
1.break 强制退出循环(只能放在循环中),用于从For语句,while语句或repeat语句中强制退出. 2.continue 用于从For语句,while语句或repeat语句强行结束本次 ...
- 下一代NoSQL:最终一致性的末日
相比关系型数据库,NoSQL解决方案提供了shared-nothing.容错和可扩展的分布式架构等特性,同时也放弃了关系型数据库的强数据一致性和隔离性,美其名曰:"最终一致性". ...
- ASP.NET中前台调用后台的方法
学习文章:http://www.cnblogs.com/kingteach/archive/2010/11/12/1875633.html 练习代码: 前台: <html xmlns=" ...
- [terry笔记]IMPDP报错ORA-39083 Object type TYPE failed to create ORA-02304
今天在使用impdp导入的时候(同一数据库中转换schema),遇到了 ORA-39083: Object type TYPE failed to create with error: ORA-023 ...
- [笔记]--Ubuntu安装Sublime Text 2
sublime text 2 有两种安装方式,一种是添加软件源,然后用命令安装.另外一种是下载安装包.解压手动安装.Sublime Text 2 入门及技巧 一.下载安装 1.在Sublime Tex ...
- EmguCV学习——简单算法 差分与高斯
公司项目需要检测运动物体,我对opencv也没啥研究,google了好久看了好多方法,最简单的就是差分与高斯背景建模了. 旁边搞c++的同事正在搞更nb的算法,等出来了 我再转成C#版的分享. 先看差 ...
- lib和dll的区别,生成(转)
首先介绍下静态库(静态链接库,.lib文件),动态库*(动态链接库,.dll文件)的概念,首先两者都是代码共享的方式. 静态库:在链接步骤中,连接器将从库文件取得所需的代码,复制到生成的可执行文件,这 ...
- Ajax-goahead局部刷新页面
软件开发最常用的方法是:C/S,B/S.如果嵌入式设备中使用Ajax,那么既可以使用C/S方式,也可以使用B/S开发上位机.最近公司的一个项目需要异步获取后台数据,使用form更新数据时会有空白卡顿不 ...