Good Luck in CET-4 Everybody!

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3617    Accepted Submission(s): 2279

Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!

 
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
 
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
 
Sample Input
1
3
 
Sample Output
Kiki
Cici
 
Author
lcy
 
Source
 
Recommend
lcy

这题很容易发现n为3的倍数时候是必败点。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n;
while(scanf("%d",&n) == )
{
if(n%)printf("Kiki\n");
else printf("Cici\n");
}
return ;
}

也可以使用SG函数的方法做,很简单

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = ;
bool vis[MAXN];
int sg[MAXN];
int mex(int x)
{
if(sg[x]!=-)return sg[x];
memset(vis,false,sizeof(vis));
for(int i = ;i <= x;i <<= )
{
vis[mex(x-i)] = true;
}
for(int i = ; ; i++)
if(!vis[i])
return sg[x] = i;
}
int main()
{
int n;
memset(sg,-,sizeof(sg));
for(int i = ;i <=;i++)
sg[i] = mex(i);
while(scanf("%d",&n) == )
{
if(sg[n]==)printf("Cici\n");
else printf("Kiki\n");
}
return ;
}

HDU 1847 Good Luck in CET-4 Everybody!(找规律,或者简单SG函数)的更多相关文章

  1. HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析)

    HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析) 题意分析 简单的SG分析 题意分析 简单的nim 博弈 博弈论快速入门 代码总览 //#inclu ...

  2. hdu 1847 Good Luck in CET-4 Everybody!(巴什博弈)

    Good Luck in CET-4 Everybody! HDU - 1847 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Ci ...

  3. HDU 1847 Good Luck in CET-4 Everybody! (巴什博弈)

    题目链接:HDU 1847 Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此. ...

  4. HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

    Good Luck in CET-4 Everybody! Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?或许紧张得连短学期的ACM都没工夫练习了.反正我知 ...

  5. HDU 1847 Good Luck in CET-4 Everybody!(找规律版巴什博奕)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  6. HDU 1847 Good Luck in CET-4 Everybody!(SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. 题解报告:hdu 1847 Good Luck in CET-4 Everybody!(入门SG值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1847 Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧 ...

  8. hdu 1848 简单SG函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848 Problem Description 任何一个大学生对菲波那契数列(Fibonacci num ...

  9. 【hdu 6172】Array Challenge(数列、找规律)

    多校10 1002 HDU 6172 Array Challenge 题意 There's an array that is generated by following rule. \(h_0=2, ...

随机推荐

  1. iOS富文本(二)初识Text Kit

    概述 Text Kit 是建立在Core Text上的文本布局系统,虽然没有Core Text那么强大的文本处理功能,但是对于大多数常见的文本布局用Text Kit能够很简单的实现,而不是用Core ...

  2. POJ 2594 Treasure Exploration (可相交最小路径覆盖)

    题意 给你张无环有向图,问至少多少条路径能够覆盖该图的所有顶点--并且,这些路径可以有交叉. 思路 不是裸的最小路径覆盖,正常的最小路径覆盖中两个人走的路径不能有重复的点,而本题可以重复. 当然我们仍 ...

  3. 旧书重温:0day2【3】 详细解读PEB法 查找kener32地址

    题外话:上一篇文章中的 PEB法查找kerner32地址的方法 对TEB.PEB .PE结构 知识要求很高,确实在写汇编代码时候小编 感觉自己能力,信手啪啪一顿乱撸,结果一运行,非法访问了,没办法翻阅 ...

  4. Python 删除 数组

    numpy删除一列 从0开始,第三个参数是第几个维度  可以多删几个 

  5. ecshop 点购物车弹出提示框

    1.找到common.js在最下面输入以下代码 * 点击购物后弹出提示层 * Chen 2010.7.28 * 参数 cartinfo:购物车信息 */function openDiv_chen(ca ...

  6. 支持向量机之Hinge Loss 解释

    Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法.这里换一种角度来思考,在机器学习领域,一般的做法是经验风 ...

  7. mysql innodb锁简析(1)

    说好的每天一个技术博客,选了iteye,但是,那个界面真的好丑啊,丑的让我都没写下去的欲望了,所以,还是转移到博客园里面吧,虽然这里也是很丑的! 直接步入正题: 1. 数据库锁包括:读锁(可共享锁)和 ...

  8. 大数据分析的众包平台—Kaggle

    众包(Jeff Howe,2006)是一种在互联网蓬勃发展的背景下产生的一种创新的生产组织形式.在这样的商业模式下,企业利用网络将工作分配出去,通过让更合适的人群参与其中来发现创意和解决技术问题.比较 ...

  9. NoSQL架构实践(一)——以NoSQL为辅

    前面<为什么要使用NoSQL>和<关系数据库还是NoSQL数据库>两篇从大体上介绍了为什么要用NoSQL,何时该用NoSQL.经常有朋友遇到困惑,看到NoSQL的介绍,觉得很好 ...

  10. Kyoto Cabinet(DBM) + Kyoto Tycoon(网络层)

    项目原地址kyotocabinet: http://fallabs.com/kyotocabinet/       kyototycoon:   http://fallabs.com/kyototyc ...