Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”和“平行性”。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和错切(Shear)。

在做2D图形引擎时,仿射变换是非常重要的点,图形的旋转等各种表现都需要通过仿射变换来完成,比如在显示列表树中,父节点旋转了,那么子节点在计算显示时也要叠加上父节点的变换矩阵,这是叠加矩阵。还有计算2D空间内的点在经过仿射变换的图形中的位置、鼠标是否点在经过仿射变换过的矩形中,等等都是需要仿射变换来完成计算。

定义一个矩阵类Matrix包含属性如下:

参数 描述
a 水平缩放比例
b 垂直倾斜比例
c 水平倾斜比例
d 垂直缩放比例
x 水平偏移像素
y 垂直偏移像素

矩阵的默认值为Matrix(1,0,0,1,0,0),后面的变换以改变矩阵值的形式完成。通过H5中的canvas实现改变图形:

var c=document.getElementById("canvas");
var ctx=c.getContext("2d"); ctx.fillStyle="yellow";
ctx.fillRect(0,0,250,100) var matrix = RM.Matrix.create(1,0,0,1,0,0);
ctx.setTransform(matrix.a,matrix.b,matrix.c,matrix.d,matrix.x,matrix.y);
ctx.fillStyle="red";
ctx.fillRect(0,0,250,100);

平移

平移变换是一种“刚体变换”,并不会改变图形的形状。

//(平移到点40,50)
matrix.translate( 40, 50 );

涉及到函数的平移公式code:

/**平移x,y像素*/
public translate( x:number, y:number ):RM.Matrix {
this.x += x;
this.y += y;
return this;
}

缩放

缩放变换可以改变图形的宽高比例,横向缩放与纵向缩放。当值为负数反向缩放

//(x轴缩放0.5,y轴缩放0.5)
matrix.scale( 0.5, 0.5 );

//(x轴缩放-1,y轴缩放1)
matrix.scale( -1, 1 );

涉及到函数的缩放公式code:

/**缩放,x、y轴方向缩放*/
public scale( scaleX:number, scaleY:number ):RM.Matrix {
this.a *= scaleX;
this.b *= scaleY;
this.c *= scaleX;
this.d *= scaleY;
this.x *= scaleX;
this.y *= scaleY;
return this;
}

旋转

目标图形围绕(x,y)点顺时针旋转value弧度

旋转矩阵为(cosA, sinA, -sinA, cosA, 0, 0)

//(顺时针旋转30角度)
matrix.rotate( 30 );

涉及到函数的旋转公式code:

/**旋转,单位是角度
* 旋转矩阵( cosA, sinA, -sinA, cosA, 0, 0)
* */
public rotate( angle:number ):RM.Matrix {
angle = ( angle % 360 )
angle = RM.GFunction.angle2radian( angle );//角度转弧度
var cos:number = Math.cos( angle );
var sin:number = Math.sin( angle );
var ta:number = this.a;
var tc:number = this.c;
var tx:number = this.x;
this.a = ta * cos - this.b * sin;
this.b = ta * sin + this.b * cos;
this.c = tc * cos - this.d * sin;
this.d = tc * sin + this.d * cos;
this.x = tx * cos - this.y * sin;
this.y = tx * sin + this.y * cos;
return this;
}

错切

错切变换指的是类似于四边形不稳定性那种性质,菱形形状。根据弧度顺时针倾斜。

错切矩阵为( 1, tanAy, tanAx, 1, 0, 0 )

//(x轴错切30角度)
matrix.skew( 30, 45 );

涉及到函数的错切公式code:

/**切变,单位是角度
* 切变矩阵 ( 1, tanAy, tanAx, 1, 0, 0)
* */
public skew( angleX:number, angleY:number ):RM.Matrix {
angleX = ( angleX % 90 );
angleY = ( angleY % 90 );
angleX = RM.GFunction.angle2radian( angleX );//角度转弧度
angleY = RM.GFunction.angle2radian( angleY );//角度转弧度
var tanAx:number = Math.tan( angleX );
var tanAy:number = Math.tan( angleY );
var ta:number = this.a;
var tc:number = this.c;
var tx:number = this.x;
this.a = ta + tanAx * this.b;
this.b = ta * tanAy + this.b;
this.c = tc + tanAx * this.d;
this.d = tc * tanAy + this.d;
this.x = tx + tanAx * this.y;
this.y = tx * tanAy + this.y;
return this;
}

属性叠加

当设置仿射变换的多个属性时,依据矩阵乘法的特性要遵循顺序(缩放->错切->旋转->平移)依次变换。

如果不按照以上顺序,产生的结果将会与预期大大不同。下图以先x轴缩放0.5、错切x轴-30y轴30、旋转10度、平移(10,20)

错切与旋转的区别:错切可以分别向两方向倾斜不同的角度;旋转是同时向两方向倾斜相同的角度。

那么,可以把错切与旋转合并,错切的默认x轴倾斜是正方向倾斜,也就是逆时针,改为与y轴倾斜相同的顺时针方向。

当旋转30度时,也就是x轴y轴同时顺时针倾斜30度。

如图所示,大矩形错切x轴y轴各30度,小矩形旋转30度,两者的结果是一致的。

//大矩形
matrix.rightTransform( 0,0,1,1,30,30,0 );
//小矩形
matrix.rightTransform( 0,0,1,1,0,0,30 );

属性叠加公式code:

/**转换矩阵操作,顺序为:缩放、切变、旋转、平移*/
public rightTransform(x:number, y:number, scaleX:number, scaleY:number, skewX:number, skewY:number, rotate:number):RM.Matrix {
rotate = ( rotate % 360 );
rotate = RM.GFunction.angle2radian(rotate);
//旋转与切变一起算
skewX = RM.GFunction.angle2radian(skewX) + rotate;
skewY = RM.GFunction.angle2radian(skewY) + rotate;
if (skewX || skewY) {
//矩阵乘法(右置矩阵、后置矩阵)
this.rightMultiply(Math.cos(skewY) * scaleX, Math.sin(skewY) * scaleX, -Math.sin(skewX) * scaleY, Math.cos(skewX) * scaleY, x, y);
}
else {
this.rightMultiply(scaleX, 0, 0, scaleY, x, y);
}
}

叠加矩阵

在显示对象树中,父节点旋转30度,那么它的子节点是否也要旋转到相对于父节点的位置呢?答案是肯定的,必须旋转到相对位置。这就涉及到矩阵乘法,例如矩阵A*矩阵B得到的就是叠加矩阵,但是一定要注意的是 A*B ≠ B*A

矩阵乘法满足结合律,但不满足交换律。

因为矩阵A*B=C,C的结果是由A的行与B的列相乘和的结果;而B*A=D,D的结果是由B的行与A的列相乘和的结果。显然,得到的结果C和D不一定相等

显然,大矩形为父节点,小矩形为大矩形的子节点,当大矩形旋转60度时,小矩形相对于父节点为0度,

然后小矩形再旋转60度,这是相对于父节点旋转了60度,相对于原点旋转了120度。大矩形以原点(0,0)点旋转,小矩形以大矩形内的坐标(0,0)点旋转。

parent.matrix = RM.Matrix.create(0,0,1,1,0,0,60);
//父节点的矩阵与子节点的矩阵相乘,便是子节点的真实矩阵
child.matrix = parent.matrix.rightTransform(0,0,1,1,0,0,60);

矩阵的运用

矩阵这东西在图形引擎中的运用是很多的,上面的例图就是使用自己写好的图形引擎,通过设置属性再渲染到canvas中的。一张坐标轴地图、一个虚线矩形、一个实线矩形完成演示。

矩阵的运用还是很多的,2D图形引擎中坐标点的判断,鼠标点击是否在图形上,脏矩形的范围,子节点上的坐标与原点坐标系的转换,等都是通过点与矩阵之间的二维空间转换而得到确切的值。

通过Matrix进行二维图形仿射变换的更多相关文章

  1. 二维图形的矩阵变换(三)——在WPF中的应用矩阵变换

    原文:二维图形的矩阵变换(三)--在WPF中的应用矩阵变换 UIElement和RenderTransform 首先,我们来看看什么样的对象可以进行变换.在WPF中,用于呈现给用户的对象的基类为Vis ...

  2. 二维图形的矩阵变换(二)——WPF中的矩阵变换基础

    原文:二维图形的矩阵变换(二)--WPF中的矩阵变换基础 在前文二维图形的矩阵变换(一)——基本概念中已经介绍过二维图像矩阵变换的一些基础知识,本文中主要介绍一下如何在WPF中进行矩阵变换. Matr ...

  3. matlab绘制二维图形

    常用的二维图形命令: plot:绘制二维图形 loglog:用全对数坐标绘图 semilogx:用半对数坐标(X)绘图 semilogy:用半对数坐标(Y)绘图 fill:绘制二维多边填充图形 pol ...

  4. 3ds max学习笔记(十五)-- 二维图形的操作

    (二维图形的创建) 1,在命令面板的[新建],单击第二个按钮: 从中选择对象名称,在视图种单击拖动进行创建,特殊:线:摁[shift]限制水平,垂直方向: 2,二维对象参数: 在渲染中启用:显示二维线 ...

  5. VS2008集成QT的OpenGL开发(实现二维图形的旋转)

    主要是利用Qt中的定时器实现了二维图形的旋转功能: #ifndef QGLTEST_H #define QGLTEST_H #include <QGLWidget> #include &l ...

  6. openGL实现二维图形和三维图形

    openGL是一个强大的底层图形库,其命令最初的时候使用C语言实现的.openGL定义了一个图形程序接口,常用于制作处理三维图像,功能强大,调用方便,在图像处理十分受欢迎. 实现图形主要使用的是ope ...

  7. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  8. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  9. POJ 2155 Matrix (二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17224   Accepted: 6460 Descripti ...

随机推荐

  1. 微信公众号开发之VS远程调试

    目录 (一)微信公众号开发之VS远程调试 (二)微信公众号开发之基础梳理 (三)微信公众号开发之自动消息回复和自定义菜单 前言 微信公众平台消息接口的工作原理大概可以这样理解:从用户端到公众号端一个流 ...

  2. [虾扯蛋] android界面框架-Window

    从纯sdk及framwork的角度看,android中界面框架相关的类型有:Window,WindowManager,View等.下面就以这几个类为出发点来概览下安卓开发的"界面架构&quo ...

  3. JAVA回调机制(CallBack)详解

    序言 最近学习java,接触到了回调机制(CallBack).初识时感觉比较混乱,而且在网上搜索到的相关的讲解,要么一言带过,要么说的比较单纯的像是给CallBack做了一个定义.当然了,我在理解了回 ...

  4. 在ASP.NET Core应用中如何设置和获取与执行环境相关的信息?

    HostingEnvironment是承载应用当前执行环境的描述,它是对所有实现了IHostingEnvironment接口的所有类型以及对应对象的统称.如下面的代码片段所示,一个HostingEnv ...

  5. NLP点滴——文本相似度

    [TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...

  6. C#异步编程

    什么是异步编程 什么是异步编程呢?举个简单的例子: using System.Net.Http; using System.Threading.Tasks; using static System.C ...

  7. .NET应用程序域

    在.NET平台下,可执行程序并没有直接承载在Windows进程中,而非托管程序是直接承载的..NET可执行程序承载在进程的一个逻辑分区中,称之为应用程序域(AppDomain).一个进程可以包含多个应 ...

  8. BPM配置故事之案例3-参与者与数据自动加载

    这才过了两天,阿海又来了. 阿海:公司决定改进管理方式,以后物资申请的申请人和申请部门要写具体使用人的名字和部门了. 小明:不是要让我改回去吧? 阿海:那太麻烦了,你能不能把申请人改成选择,选好人自动 ...

  9. RunLoop 总结:RunLoop的应用场景(一)

    参考资料 好的书籍都是值得反复看的,那好的文章,好的资料也值得我们反复看.我们在不同的阶段来相同的文章或资料或书籍都能有不同的收获,那它就是好文章,好书籍,好资料.关于iOS 中的RunLoop资料非 ...

  10. NOIP2016纪录[那些我所追求的]

    人生第一场正式OI [序] 2016-12-04 见底部 [Day -1] 2016-11-17 期中考试无心插柳柳成荫,考了全市第2班里第1(还不是因为只复习了不到两天考试),马上请了一个周的假准备 ...