A:A. Nuts

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You have a nuts and lots of boxes. The boxes have a wonderful feature: if you put x (x ≥ 0)divisors (the spacial bars that can divide a box) to it, you get a box, divided into x + 1sections.

You are minimalist. Therefore, on the one hand, you are against dividing some box into more than k sections. On the other hand, you are against putting more than v nuts into some section of the box. What is the minimum number of boxes you have to use if you want to put all the nuts in boxes, and you have b divisors?

Please note that you need to minimize the number of used boxes, not sections. You do not have to minimize the number of used divisors.

Input

The first line contains four space-separated integers kabv (2 ≤ k ≤ 1000; 1 ≤ a, b, v ≤ 1000) — the maximum number of sections in the box, the number of nuts, the number of divisors and the capacity of each section of the box.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
3 10 3 3
output
2
input
3 10 1 3
output
3
input
100 100 1 1000
output
1
Note

In the first sample you can act like this:

  • Put two divisors to the first box. Now the first box has three sections and we can put three nuts into each section. Overall, the first box will have nine nuts.
  • Do not put any divisors into the second box. Thus, the second box has one section for the last nut.

In the end we've put all the ten nuts into boxes.

The second sample is different as we have exactly one divisor and we put it to the first box. The next two boxes will have one section each.

花了半个多小时去理清数据的关系,开始感觉无从下手。。。我的方法是:制造相应的盒子,能放多少就尽量放到前面的盒子里面,最后统计一下就可以

#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
int aa[]; //盒子能放的个数
int main()
{
    int k,a,b,v;
    cin>>k>>a>>b>>v;
    int ans=;
    for (int i=;i<=;i++)
         aa[i]=v;               初始每个盒子开始只有一个SECTION
    for (int i=;i<=;i++)
     {
         if (b==) break;
         if (b+>=k) {aa[i]+=v*(k-);b-=(k-);}  有B则先用
         else
         {
             aa[i]+=b*v;
             break;
         }
     }
    int tem=,ll;
    for (int i=;i<=;i++)
    {
        tem+=aa[i];
        if (tem>=a) {ll=i;break;}
    }
    cout<<ll<<endl;
    return ;

}

B:题意很简单,构造等差数列,求改变的数的个数最小。。

从A[1]暴力枚举就可,不知为何我从A[N]枚举就挂,白WA5次 #include<iostream>

#include<algorithm>
#include<math.h>
using namespace std;
int a[],n,k;
int main()
{
    cin>>n>>k;
    for (int i=;i<=n;i++)
    cin>>a[i];
    int ans=;
    int kk;
    for (int i=;i<=;i++)
    {
        int o=;
        int tem=i;
        for (int j=;j<=n;j++)
        {
            if (a[j]!=tem)
            o++;
            tem+=k;
        }
        if (o<ans) {ans=o;kk=i;}
    }     cout<<ans<<endl;
    if (ans==) return ;
    for (int i=;i<=n;i++)
    {
        if (a[i]>kk) {cout<<"- "<<i<<" "<<a[i]-kk<<endl;}
        else if (a[i]<kk) {cout<<"+ "<<i<<" "<<kk-a[i]<<endl;}
        kk+=k;
    }
    return ;
} C题,我是瞎搞,我的理解是使点连接的边相对稀少,先这样加边:1-->2,2-->3,3-->4,n-1-->n;先见N-1条边,然后:1-->3,2-->4,3-->5,依次;然后是:1--4,2-->5,....感觉这样相对不密集。。#include<iostream>#include<algorithm>
#include<math.h>
#include<string.h>
using namespace std;
int n,p;
int mp[][];
int main()
{
  int t;
  cin>>t;
  while (t--)
  {
      int m=*n+p;
      memset(mp,,sizeof(mp));
      cin>>n>>p;
      for (int i=;i<n;i++)
        mp[i][i+]=;
        m=*n+p;
        m=m-(n-);
            for (int i=;i<n;i++)
            {
             if (m==) break;
             for (int j=;j+i<=n;j++)
             {
                mp[j][j+i]=;
                m--;
                if (m==) break;
              }
            }
    for (int i=;i<=n;i++)
        for (int j=;j<=n;j++)
        if (mp[i][j])
        cout<<i<<" "<<j<<endl;
  }
    return ;}还有不得不吐槽自己的码代码能力,太坑了 

codeforces #236 div2 简洁题解的更多相关文章

  1. Codeforces Round div2 #541 题解

    codeforces Round #541 abstract: I构造题可能代码简单证明很难 II拓扑排序 III并查集 启发式排序,带链表 IV dp 处理字符串递推问题 V 数据结构巧用:于二叉树 ...

  2. codeforces 576 div2 A-D题解

    A题 Description 题目链接: https://codeforces.com/contest/1199/problem/A 题意: 给定长度为n(1≤n≤100000)的一个序列a,以及两个 ...

  3. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  4. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  5. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  6. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  7. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  8. Codeforces Round #543 Div1题解(并不全)

    Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...

  9. Codeforces Round #545 Div1 题解

    Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...

随机推荐

  1. Ubuntu安装wps for linux

    1.WPS For Linux 2013 还是只提供了32位版本,我用的是 64位 Ubuntu,如果您也是64位系统,还需要提前安装一些32位的库文件. sudo apt-get install i ...

  2. CentOS 7上的redis搭建

    http://www.cnblogs.com/shanyou/archive/2012/07/14/2591881.html

  3. 共享内存shared pool (5):详解一条SQL在library cache中解析

    前面介绍的 shared pool,library cache结构,都是为了说明一条SQL是如何被解析的.先看下面的图: 图中涉及的各结构简单介绍 父HANDLE,里面有父游标堆0的地址.. 父游标堆 ...

  4. sqlalchemy - day2

     Relationship Configuration 一.one to many 直接上代码 from sqlalchemy import create_engine engine = create ...

  5. [笔记]--Sublime Text 2使用技巧

    Sublime个人喜好设置: 在打开个人设置页面Preferences >> Settings - User,加入以下内容: { , //TAB键,4个空格 "translate ...

  6. next permutaion算法

    算法描述: Find largest index i such that array[i − 1] < array[i]. Find largest index j such that j ≥ ...

  7. bc命令

    bc 命令:     bc 命令是用于命令行计算器. 它类似基本的计算器. 使用这个计算器可以做基本的数学运算. [tough@localhost *|bc [tough@localhost expr ...

  8. Tomcat 服务器服务的注册修改删除

    1. 注册Tomcat服务 运行cmd,切换目录到tomcat/bin, 执行以下命令service.bat install 2.删除Tomcat服务

  9. 初始twisted(一)

    1.与同步模型的优势: 1.有大量的任务,一个时刻内至少有一个任务要运行 2.任务执行大量的I/O,同步模型会因为任务阻塞而浪费大量时间 3.任务之间相互独立,任务内部交互少. 2.与同步模式客户端的 ...

  10. 基于HTML5的可预览多图片Ajax上传

    一.关于图片上传什么什么的 在XHTML的时代,我们使用HTML file控件上传图片一次只能上传一张.要一次上传多图,做法是借助于flash.例如swfupload.js.可惜,使用复杂的点,比如f ...